Loading…

Osmolyte effects on helix formation in peptides and the stability of coiled‐coils

The ability of several naturally occurring substances known as osmolytes to induce helix formation in an alanine‐based peptide have been investigated. As predicted by the osmophobic effect hypothesis, the osmolytes studies here do induce helix formation. Trimethylamine‐N‐oxide (TMAO) is the best str...

Full description

Saved in:
Bibliographic Details
Published in:Protein science 2002-08, Vol.11 (8), p.2048-2051
Main Authors: Celinski, Scott A., Scholtz, J. Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4168-54684e0544ca7a8eb5945168f8896f23ac079fb7073c1c5acecc33c180fb2cef3
cites cdi_FETCH-LOGICAL-c4168-54684e0544ca7a8eb5945168f8896f23ac079fb7073c1c5acecc33c180fb2cef3
container_end_page 2051
container_issue 8
container_start_page 2048
container_title Protein science
container_volume 11
creator Celinski, Scott A.
Scholtz, J. Martin
description The ability of several naturally occurring substances known as osmolytes to induce helix formation in an alanine‐based peptide have been investigated. As predicted by the osmophobic effect hypothesis, the osmolytes studies here do induce helix formation. Trimethylamine‐N‐oxide (TMAO) is the best structure‐inducing osmolytes investigated here, but it is not as effective in promoting helix formation as the common cosolvent trifluoroethanol (TFE). We also provide a semiquantitative study of the ability of TMAO to induce helix formation and urea, which acts as a helix (and protein) denaturant. We find that on a molar basis, these agents are exactly counteractive as structure inducing and unfolding agents. Finally, we extend the investigations to the effects of urea and TMAO on the stability of a dimeric coiled‐coil peptide and find identical results. Together these results support the tenets of the osmophobic hypothesis and highlight the importance of the polypeptide backbone in protein folding and stability.
doi_str_mv 10.1110/ps.0211702
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2373673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71942871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4168-54684e0544ca7a8eb5945168f8896f23ac079fb7073c1c5acecc33c180fb2cef3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi1ERZfSCw9Q-cQBKa3HdmLnUglV_JMqbUWL1JvleMesqyQOsRfYG4_AM_IkuNpVCxdO843mp28-zRDyEtgpALCzKZ0yDqAYf0IWIJu20m1z-5QsWNtApUWjD8nzlO4YYxK4eEYOgYPksm4X5HqZhthvM1L0Hl1ONI50jX34QX2cB5tD6cNIJ5xyWGGidlzRvEaasu1CH_KWRk9dDD2ufv_8dS_SC3LgbZ_weF-PyOd3b28uPlSXy_cfL95cVk5Co6taNloiq6V0VlmNXd3Kugy8LvE9F9Yx1fpOMSUcuNo6dE4UqZnvuEMvjsj5znfadAOuHI55tr2Z5jDYeWuiDebfyRjW5kv8ZrhQolGiGLzaG8zx6wZTNkNIDvvejhg3yShoJdcKCvh6B7o5pjSjf1gCzNz_wEzJ7H9Q4JO_Yz2i-6MXAHbA93K17X-szNWnJQBnUos_JlOTow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71942871</pqid></control><display><type>article</type><title>Osmolyte effects on helix formation in peptides and the stability of coiled‐coils</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>PubMed Central</source><creator>Celinski, Scott A. ; Scholtz, J. Martin</creator><creatorcontrib>Celinski, Scott A. ; Scholtz, J. Martin</creatorcontrib><description>The ability of several naturally occurring substances known as osmolytes to induce helix formation in an alanine‐based peptide have been investigated. As predicted by the osmophobic effect hypothesis, the osmolytes studies here do induce helix formation. Trimethylamine‐N‐oxide (TMAO) is the best structure‐inducing osmolytes investigated here, but it is not as effective in promoting helix formation as the common cosolvent trifluoroethanol (TFE). We also provide a semiquantitative study of the ability of TMAO to induce helix formation and urea, which acts as a helix (and protein) denaturant. We find that on a molar basis, these agents are exactly counteractive as structure inducing and unfolding agents. Finally, we extend the investigations to the effects of urea and TMAO on the stability of a dimeric coiled‐coil peptide and find identical results. Together these results support the tenets of the osmophobic hypothesis and highlight the importance of the polypeptide backbone in protein folding and stability.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1110/ps.0211702</identifier><identifier>PMID: 12142459</identifier><language>eng</language><publisher>Bristol: Cold Spring Harbor Laboratory Press</publisher><subject>Alanine - chemistry ; Amino Acid Sequence ; Circular Dichroism ; Dimerization ; DNA-Binding Proteins ; For the Record ; helix‐coil transition ; leucine zipper ; Leucine Zippers - drug effects ; Methylamines - pharmacology ; Molecular Sequence Data ; Osmolar Concentration ; peptide stability ; Protein Denaturation ; Protein Folding ; Protein Kinases - chemistry ; Protein Structure, Secondary - drug effects ; Saccharomyces cerevisiae Proteins - chemistry ; TFE, 1,1,1‐trifluoroethanol ; TMAO ; TMAO, trimethylamine N‐oxide ; Trifluoroethanol - pharmacology ; Urea - pharmacology</subject><ispartof>Protein science, 2002-08, Vol.11 (8), p.2048-2051</ispartof><rights>Copyright © 2002 The Protein Society</rights><rights>Copyright © Copyright 2002 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4168-54684e0544ca7a8eb5945168f8896f23ac079fb7073c1c5acecc33c180fb2cef3</citedby><cites>FETCH-LOGICAL-c4168-54684e0544ca7a8eb5945168f8896f23ac079fb7073c1c5acecc33c180fb2cef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373673/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373673/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12142459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Celinski, Scott A.</creatorcontrib><creatorcontrib>Scholtz, J. Martin</creatorcontrib><title>Osmolyte effects on helix formation in peptides and the stability of coiled‐coils</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>The ability of several naturally occurring substances known as osmolytes to induce helix formation in an alanine‐based peptide have been investigated. As predicted by the osmophobic effect hypothesis, the osmolytes studies here do induce helix formation. Trimethylamine‐N‐oxide (TMAO) is the best structure‐inducing osmolytes investigated here, but it is not as effective in promoting helix formation as the common cosolvent trifluoroethanol (TFE). We also provide a semiquantitative study of the ability of TMAO to induce helix formation and urea, which acts as a helix (and protein) denaturant. We find that on a molar basis, these agents are exactly counteractive as structure inducing and unfolding agents. Finally, we extend the investigations to the effects of urea and TMAO on the stability of a dimeric coiled‐coil peptide and find identical results. Together these results support the tenets of the osmophobic hypothesis and highlight the importance of the polypeptide backbone in protein folding and stability.</description><subject>Alanine - chemistry</subject><subject>Amino Acid Sequence</subject><subject>Circular Dichroism</subject><subject>Dimerization</subject><subject>DNA-Binding Proteins</subject><subject>For the Record</subject><subject>helix‐coil transition</subject><subject>leucine zipper</subject><subject>Leucine Zippers - drug effects</subject><subject>Methylamines - pharmacology</subject><subject>Molecular Sequence Data</subject><subject>Osmolar Concentration</subject><subject>peptide stability</subject><subject>Protein Denaturation</subject><subject>Protein Folding</subject><subject>Protein Kinases - chemistry</subject><subject>Protein Structure, Secondary - drug effects</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>TFE, 1,1,1‐trifluoroethanol</subject><subject>TMAO</subject><subject>TMAO, trimethylamine N‐oxide</subject><subject>Trifluoroethanol - pharmacology</subject><subject>Urea - pharmacology</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQxi1ERZfSCw9Q-cQBKa3HdmLnUglV_JMqbUWL1JvleMesqyQOsRfYG4_AM_IkuNpVCxdO843mp28-zRDyEtgpALCzKZ0yDqAYf0IWIJu20m1z-5QsWNtApUWjD8nzlO4YYxK4eEYOgYPksm4X5HqZhthvM1L0Hl1ONI50jX34QX2cB5tD6cNIJ5xyWGGidlzRvEaasu1CH_KWRk9dDD2ufv_8dS_SC3LgbZ_weF-PyOd3b28uPlSXy_cfL95cVk5Co6taNloiq6V0VlmNXd3Kugy8LvE9F9Yx1fpOMSUcuNo6dE4UqZnvuEMvjsj5znfadAOuHI55tr2Z5jDYeWuiDebfyRjW5kv8ZrhQolGiGLzaG8zx6wZTNkNIDvvejhg3yShoJdcKCvh6B7o5pjSjf1gCzNz_wEzJ7H9Q4JO_Yz2i-6MXAHbA93K17X-szNWnJQBnUos_JlOTow</recordid><startdate>200208</startdate><enddate>200208</enddate><creator>Celinski, Scott A.</creator><creator>Scholtz, J. Martin</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200208</creationdate><title>Osmolyte effects on helix formation in peptides and the stability of coiled‐coils</title><author>Celinski, Scott A. ; Scholtz, J. Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4168-54684e0544ca7a8eb5945168f8896f23ac079fb7073c1c5acecc33c180fb2cef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Alanine - chemistry</topic><topic>Amino Acid Sequence</topic><topic>Circular Dichroism</topic><topic>Dimerization</topic><topic>DNA-Binding Proteins</topic><topic>For the Record</topic><topic>helix‐coil transition</topic><topic>leucine zipper</topic><topic>Leucine Zippers - drug effects</topic><topic>Methylamines - pharmacology</topic><topic>Molecular Sequence Data</topic><topic>Osmolar Concentration</topic><topic>peptide stability</topic><topic>Protein Denaturation</topic><topic>Protein Folding</topic><topic>Protein Kinases - chemistry</topic><topic>Protein Structure, Secondary - drug effects</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>TFE, 1,1,1‐trifluoroethanol</topic><topic>TMAO</topic><topic>TMAO, trimethylamine N‐oxide</topic><topic>Trifluoroethanol - pharmacology</topic><topic>Urea - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Celinski, Scott A.</creatorcontrib><creatorcontrib>Scholtz, J. Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Celinski, Scott A.</au><au>Scholtz, J. Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osmolyte effects on helix formation in peptides and the stability of coiled‐coils</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2002-08</date><risdate>2002</risdate><volume>11</volume><issue>8</issue><spage>2048</spage><epage>2051</epage><pages>2048-2051</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>The ability of several naturally occurring substances known as osmolytes to induce helix formation in an alanine‐based peptide have been investigated. As predicted by the osmophobic effect hypothesis, the osmolytes studies here do induce helix formation. Trimethylamine‐N‐oxide (TMAO) is the best structure‐inducing osmolytes investigated here, but it is not as effective in promoting helix formation as the common cosolvent trifluoroethanol (TFE). We also provide a semiquantitative study of the ability of TMAO to induce helix formation and urea, which acts as a helix (and protein) denaturant. We find that on a molar basis, these agents are exactly counteractive as structure inducing and unfolding agents. Finally, we extend the investigations to the effects of urea and TMAO on the stability of a dimeric coiled‐coil peptide and find identical results. Together these results support the tenets of the osmophobic hypothesis and highlight the importance of the polypeptide backbone in protein folding and stability.</abstract><cop>Bristol</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>12142459</pmid><doi>10.1110/ps.0211702</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2002-08, Vol.11 (8), p.2048-2051
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2373673
source Wiley-Blackwell Read & Publish Collection; PubMed Central
subjects Alanine - chemistry
Amino Acid Sequence
Circular Dichroism
Dimerization
DNA-Binding Proteins
For the Record
helix‐coil transition
leucine zipper
Leucine Zippers - drug effects
Methylamines - pharmacology
Molecular Sequence Data
Osmolar Concentration
peptide stability
Protein Denaturation
Protein Folding
Protein Kinases - chemistry
Protein Structure, Secondary - drug effects
Saccharomyces cerevisiae Proteins - chemistry
TFE, 1,1,1‐trifluoroethanol
TMAO
TMAO, trimethylamine N‐oxide
Trifluoroethanol - pharmacology
Urea - pharmacology
title Osmolyte effects on helix formation in peptides and the stability of coiled‐coils
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osmolyte%20effects%20on%20helix%20formation%20in%20peptides%20and%20the%20stability%20of%20coiled%E2%80%90coils&rft.jtitle=Protein%20science&rft.au=Celinski,%20Scott%20A.&rft.date=2002-08&rft.volume=11&rft.issue=8&rft.spage=2048&rft.epage=2051&rft.pages=2048-2051&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1110/ps.0211702&rft_dat=%3Cproquest_pubme%3E71942871%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4168-54684e0544ca7a8eb5945168f8896f23ac079fb7073c1c5acecc33c180fb2cef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=71942871&rft_id=info:pmid/12142459&rfr_iscdi=true