Loading…
Role of cystine transport in intracellular glutathione level and cisplatin resistance in human ovarian cancer cell lines
Transport system x c − is a member of plasma membrane heterodimeric amino-acid transporters and consists of two protein components, xCT and 4F2hc. This system mediates cystine entry coupled with the exodus of intracellular glutamate and regulates the intracellular glutathione (GSH) levels in most ma...
Saved in:
Published in: | British journal of cancer 2003-03, Vol.88 (6), p.951-956 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transport system x
c
−
is a member of plasma membrane heterodimeric amino-acid transporters and consists of two protein components, xCT and 4F2hc. This system mediates cystine entry coupled with the exodus of intracellular glutamate and regulates the intracellular glutathione (GSH) levels in most mammalian cultured cells. We studied the activity of system x
c
−
and GSH content in human ovarian cancer cell line (A2780) and its cisplatin (CDDP)-resistant variant (A2780DDP). The rate of cystine uptake was approximately 4.5-fold higher in A2780DDP cells than in A2780 cells and the cystine uptake in A2780DDP cells was mediated by system x
c
−
. Intracellular GSH content was much higher in A2780DDP cells but it fell drastically in the presence of excess glutamate, which inhibited the cystine uptake competitively. xCT and 4F2hc mRNAs were definitely expressed in A2780DDP cells, but far less in A2780 cells. Expression of system x
c
−
activity by transfection with cDNAs for xCT and 4F2hc made A2780 cells more resistant to CDDP. Similar results on the cystine uptake were obtained in human colonic cancer cell lines. These findings suggest that the system x
c
−
plays an important role in maintaining the higher levels of GSH and consequently in CDDP resistance in cancer cell lines. |
---|---|
ISSN: | 0007-0920 1532-1827 |
DOI: | 10.1038/sj.bjc.6600786 |