Loading…

Your pain or mine? Common and distinct neural systems supporting the perception of pain in self and other

Humans possess a remarkable capacity to understand the suffering of others. Cognitive neuroscience theories of empathy suggest that this capacity is supported by 'shared representations' of self and other. Consistent with this notion, a number of studies have found that perceiving others i...

Full description

Saved in:
Bibliographic Details
Published in:Social cognitive and affective neuroscience 2008-06, Vol.3 (2), p.144-160
Main Authors: Ochsner, Kevin N., Zaki, Jamil, Hanelin, Josh, Ludlow, David H., Knierim, Kyle, Ramachandran, Tara, Glover, Gary H., Mackey, Sean C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Humans possess a remarkable capacity to understand the suffering of others. Cognitive neuroscience theories of empathy suggest that this capacity is supported by 'shared representations' of self and other. Consistent with this notion, a number of studies have found that perceiving others in pain and experiencing pain oneself recruit overlapping neural systems. Perception of pain in each of these conditions, however, may also cause unique patterns of activation, that may reveal more about the processing steps involved in each type of pain. To address this issue, we examined neural activity while participants experienced heat pain and watched videos of other individuals experiencing injuries. Results demonstrated (i) that both tasks activated anterior cingulate cortex and anterior insula, consistent with prior work; (ii) whereas self-pain activated anterior and mid insula regions implicated in interoception and nociception, other pain activated frontal, premotor, parietal and amygdala regions implicated in emotional learning and processing social cues; and (iii) that levels of trait anxiety correlated with activity in rostral lateral prefrontal cortex during perception of other pain but not during self-pain. Taken together, these data support the hypothesis that perception of pain in self and other, while sharing some neural commonalities, differ in their recruitment of systems specifically associated with decoding and learning about internal or external cues.
ISSN:1749-5016
1749-5024
DOI:10.1093/scan/nsn006