Loading…

Residues in the 11 Å Channel of Histone Deacetylase 1 Promote Catalytic Activity: Implications for Designing Isoform-Selective Histone Deacetylase Inhibitors

Histone deacetylase 1 (HDAC1) has been linked to cell growth and cell cycle regulation, which makes it a widely recognized target for anticancer drugs. Whereas variations of the metal-binding and capping groups of HDAC inhibitors have been studied extensively, the role of the linker region is less w...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medicinal chemistry 2008-09, Vol.51 (18), p.5542-5551
Main Authors: Weerasinghe, Sujith V. W, Estiu, Guillermina, Wiest, Olaf, Pflum, Mary Kay H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Histone deacetylase 1 (HDAC1) has been linked to cell growth and cell cycle regulation, which makes it a widely recognized target for anticancer drugs. Whereas variations of the metal-binding and capping groups of HDAC inhibitors have been studied extensively, the role of the linker region is less well known, despite the potency of inhibitors with diverse linkers, such as MS-275. To facilitate a drug design that targets HDAC1, we assessed the influence of residues in the 11 Å channel of the HDAC1 active site on activity by using an alanine scan. The mutation of eight channel residues to alanine resulted in a substantial reduction in deacetylase activity. Molecular dynamics simulations indicated that alanine mutation results in significant movement of the active-site channel, which suggests that channel residues promote HDAC1 activity by influencing substrate interactions. With little characterization of HDAC1 available, the combined experimental and computational results define the active-site residues of HDAC1 that are critical for substrate/inhibitor binding and provide important insight into drug design.
ISSN:0022-2623
1520-4804
DOI:10.1021/jm800081j