Loading…
Functional role of J domain of cysteine string protein in Ca2+-dependent secretion from acinar cells
The heat shock protein 70 family members Hsc70 and Hsp70 are known to play a protective role against the onset of experimental pancreatitis, yet their molecular function in acini is unclear. Cysteine string protein (CSP-alpha) is a zymogen granule (ZG) membrane protein characterized by an NH(2)-term...
Saved in:
Published in: | American journal of physiology: Gastrointestinal and liver physiology 2009-05, Vol.296 (5), p.G1030-G1039 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The heat shock protein 70 family members Hsc70 and Hsp70 are known to play a protective role against the onset of experimental pancreatitis, yet their molecular function in acini is unclear. Cysteine string protein (CSP-alpha) is a zymogen granule (ZG) membrane protein characterized by an NH(2)-terminal "J domain" and a central palmitoylated string of cysteine residues. The J domain functions as a cochaperone by modulating the activity of Hsc70/Hsp70 family members. A role for CSP-alpha in regulating digestive enzyme exocytosis from pancreas was investigated by introducing CSP-alpha truncations into isolated acini following their permeabilization with Perfringolysin O. Incubation of acini with CSP-alpha(1-82), containing the J domain, significantly augmented Ca(2+)-stimulated amylase secretion. Effects of CSP-alpha(1-82) were concentration dependent, with a maximum 80% increase occurring at 200 microg/ml of protein. Although CSP-alpha(1-82) had no effects on basal secretion measured in the presence of < or =10 nM free Ca(2+), it did significantly augment GTP-gammaS-induced secretion under basal Ca(2+) conditions by approximately 25%. Mutation of the J domain to abolish its cochaperone activity failed to augment Ca(2+)-stimulated secretion, implicating the CSP-alpha/Hsc70 cochaperone system as a regulatory component of the secretory pathway. CSP-alpha physically associates with vesicle-associated membrane protein 8 (VAMP 8) on ZGs, and the CSP-alpha-VAMP 8 interaction was dependent on amino acids 83-112 of CSP-alpha. Immunofluorescence analysis of acinar lobules or purified ZGs confirmed the CSP-alpha colocalization with VAMP 8. These data establish a role for CSP-alpha in regulating digestive enzyme secretion and suggest that CSP-alpha and Hsc70 modulate specific soluble N-ethylmaleimide-sensitive attachment receptor interactions necessary for exocytosis. |
---|---|
ISSN: | 0193-1857 1522-1547 |
DOI: | 10.1152/ajpgi.90592.2008 |