Loading…
The Novel Fold of Scytovirin Reveals a New Twist For Antiviral Entry Inhibitors
The solution structure of the potent 95 residue anti-HIV protein scytovirin has been determined and two carbohydrate-binding sites have been identified. This unique protein, containing five structurally important disulfide bonds, demonstrates a novel fold with no elements of extended regular seconda...
Saved in:
Published in: | Journal of molecular biology 2007-06, Vol.369 (2), p.451-461 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The solution structure of the potent 95 residue anti-HIV protein scytovirin has been determined and two carbohydrate-binding sites have been identified. This unique protein, containing five structurally important disulfide bonds, demonstrates a novel fold with no elements of extended regular secondary structure. Scytovirin contains two 39 residue sequence repeats, differing in only three amino acid residues, and each repeat has primary sequence similarity to chitin binding proteins. Both sequence repeats form similarly structured domains, with the exception of one region. The result is two carbohydrate-binding sites with substantially different affinities. The unusual fold clusters aromatic residues in both sites, suggesting a binding mechanism similar to other known hevein-like carbohydrate-binding proteins but differing in carbohydrate specificity. Scytovirin, originally isolated from the cyanobacterium
Scytonema varium, holds potential as an HIV entry inhibitor for both therapeutic and prophylactic anti-HIV applications. The high-resolution structural studies reported are an important initial step in unlocking the therapeutic potential of scytovirin. |
---|---|
ISSN: | 0022-2836 1089-8638 |
DOI: | 10.1016/j.jmb.2007.03.030 |