Loading…

Marginal analysis of panel counts through estimating functions

We develop nonparametric estimation procedures for the marginal mean function of a counting process based on periodic observations, using two types of self-consistent estimating equations. The first is derived from the likelihood studied by Wellner & Zhang (2000), assuming a Poisson counting pro...

Full description

Saved in:
Bibliographic Details
Published in:Biometrika 2009-06, Vol.96 (2), p.445-456
Main Authors: HU, X. JOAN, LAGAKOS, STEPHEN W., LOCKHART, RICHARD A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c604t-e6fdacc3f6a0cb42891e052646ec4a8c2832bb6385afd19e6b9a2f01e641e0893
cites cdi_FETCH-LOGICAL-c604t-e6fdacc3f6a0cb42891e052646ec4a8c2832bb6385afd19e6b9a2f01e641e0893
container_end_page 456
container_issue 2
container_start_page 445
container_title Biometrika
container_volume 96
creator HU, X. JOAN
LAGAKOS, STEPHEN W.
LOCKHART, RICHARD A.
description We develop nonparametric estimation procedures for the marginal mean function of a counting process based on periodic observations, using two types of self-consistent estimating equations. The first is derived from the likelihood studied by Wellner & Zhang (2000), assuming a Poisson counting process. It gives a nondecreasing estimator, which equals the nonparametric maximum likelihood estimator of Wellner & Zhang and is consistent without the Poisson assumption. Motivated by the construction of parametric generalized estimating equations, the second type is a set of data-adaptive quasi-score functions, which are likelihood estimating functions under a mixed-Poisson assumption. We evaluate the procedures using simulation, and illustrate them with the data from a bladder cancer study.
doi_str_mv 10.1093/biomet/asp010
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2698463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27798835</jstor_id><oup_id>10.1093/biomet/asp010</oup_id><sourcerecordid>27798835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-e6fdacc3f6a0cb42891e052646ec4a8c2832bb6385afd19e6b9a2f01e641e0893</originalsourceid><addsrcrecordid>eNqFkc-L1DAUx4Mo7uzq0aNSBMFL3aRJ3jSXhWVdd5T1x0FBvIQ0k85kbJuapIvz35vSMrN6kfDyEvLhm_e-D6FnBL8hWNDzyrrWxHMVekzwA7QgDFhOOcEP0QJjDDlljJ2g0xB24xU4PEYnRHBGWQELdPFR-Y3tVJOptO2DDZmrs151psm0G7oYsrj1bthsMxOibVW03Sarh05H67rwBD2qVRPM0zmfoW_vrr9erfLbzzfvry5vcw2YxdxAvVZa0xoU1hUrSkEM5gUwMJqpUhclLaoKaMlVvSbCQCVUUWNigCWwFPQMXUy6_VC1Zq1NF71qZO9TRX4vnbLy75fObuXG3ckCRMmAJoHXs4B3v4bUimxt0KZpUqduCJKUlHMGmIzoy3_QnRt8cifIAhMQaZEE5ROkvQvBm_pQC8FyHIycBiOnwST-w8R70xt9LHzoZ-5OUiUgbfsUBcYiJTseU_QpGOOScZDb2CaxF_fdOH49jzUBr2ZABa2a2qtO23DgCjJy5T1XUh3_beD5hO5CdP4otVyKMnl3NMSGaH4f3pX_KWFJl1yuvv-QHN6yT1_4St7QP0jr2Os</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201696961</pqid></control><display><type>article</type><title>Marginal analysis of panel counts through estimating functions</title><source>Oxford Journals Online</source><source>JSTOR Archival Journals</source><creator>HU, X. JOAN ; LAGAKOS, STEPHEN W. ; LOCKHART, RICHARD A.</creator><creatorcontrib>HU, X. JOAN ; LAGAKOS, STEPHEN W. ; LOCKHART, RICHARD A.</creatorcontrib><description>We develop nonparametric estimation procedures for the marginal mean function of a counting process based on periodic observations, using two types of self-consistent estimating equations. The first is derived from the likelihood studied by Wellner &amp; Zhang (2000), assuming a Poisson counting process. It gives a nondecreasing estimator, which equals the nonparametric maximum likelihood estimator of Wellner &amp; Zhang and is consistent without the Poisson assumption. Motivated by the construction of parametric generalized estimating equations, the second type is a set of data-adaptive quasi-score functions, which are likelihood estimating functions under a mixed-Poisson assumption. We evaluate the procedures using simulation, and illustrate them with the data from a bladder cancer study.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asp010</identifier><identifier>PMID: 19543426</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Actuarial science ; Algorithms ; Analytical estimating ; Applications ; Biology, psychology, social sciences ; Censorship ; Consistent estimators ; Counting process ; Distribution theory ; Estimators ; Exact sciences and technology ; General topics ; Interval censoring ; Interval estimators ; Marginal analysis ; Marginal mean function ; Mathematical functions ; Mathematics ; Maximum likelihood estimation ; Maximum likelihood estimators ; Nonparametric estimation ; Nonparametric inference ; Placebos ; Poisson process ; Probability and statistics ; Quasi-score function ; Sciences and techniques of general use ; Statistics</subject><ispartof>Biometrika, 2009-06, Vol.96 (2), p.445-456</ispartof><rights>2009 Biometrika Trust</rights><rights>Oxford University Press © 2009 Biometrika Trust 2009</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-e6fdacc3f6a0cb42891e052646ec4a8c2832bb6385afd19e6b9a2f01e641e0893</citedby><cites>FETCH-LOGICAL-c604t-e6fdacc3f6a0cb42891e052646ec4a8c2832bb6385afd19e6b9a2f01e641e0893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27798835$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27798835$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21543483$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19543426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/oupbiomet/v_3a96_3ay_3a2009_3ai_3a2_3ap_3a445-456.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>HU, X. JOAN</creatorcontrib><creatorcontrib>LAGAKOS, STEPHEN W.</creatorcontrib><creatorcontrib>LOCKHART, RICHARD A.</creatorcontrib><title>Marginal analysis of panel counts through estimating functions</title><title>Biometrika</title><addtitle>Biometrika</addtitle><description>We develop nonparametric estimation procedures for the marginal mean function of a counting process based on periodic observations, using two types of self-consistent estimating equations. The first is derived from the likelihood studied by Wellner &amp; Zhang (2000), assuming a Poisson counting process. It gives a nondecreasing estimator, which equals the nonparametric maximum likelihood estimator of Wellner &amp; Zhang and is consistent without the Poisson assumption. Motivated by the construction of parametric generalized estimating equations, the second type is a set of data-adaptive quasi-score functions, which are likelihood estimating functions under a mixed-Poisson assumption. We evaluate the procedures using simulation, and illustrate them with the data from a bladder cancer study.</description><subject>Actuarial science</subject><subject>Algorithms</subject><subject>Analytical estimating</subject><subject>Applications</subject><subject>Biology, psychology, social sciences</subject><subject>Censorship</subject><subject>Consistent estimators</subject><subject>Counting process</subject><subject>Distribution theory</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Interval censoring</subject><subject>Interval estimators</subject><subject>Marginal analysis</subject><subject>Marginal mean function</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Nonparametric estimation</subject><subject>Nonparametric inference</subject><subject>Placebos</subject><subject>Poisson process</subject><subject>Probability and statistics</subject><subject>Quasi-score function</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc-L1DAUx4Mo7uzq0aNSBMFL3aRJ3jSXhWVdd5T1x0FBvIQ0k85kbJuapIvz35vSMrN6kfDyEvLhm_e-D6FnBL8hWNDzyrrWxHMVekzwA7QgDFhOOcEP0QJjDDlljJ2g0xB24xU4PEYnRHBGWQELdPFR-Y3tVJOptO2DDZmrs151psm0G7oYsrj1bthsMxOibVW03Sarh05H67rwBD2qVRPM0zmfoW_vrr9erfLbzzfvry5vcw2YxdxAvVZa0xoU1hUrSkEM5gUwMJqpUhclLaoKaMlVvSbCQCVUUWNigCWwFPQMXUy6_VC1Zq1NF71qZO9TRX4vnbLy75fObuXG3ckCRMmAJoHXs4B3v4bUimxt0KZpUqduCJKUlHMGmIzoy3_QnRt8cifIAhMQaZEE5ROkvQvBm_pQC8FyHIycBiOnwST-w8R70xt9LHzoZ-5OUiUgbfsUBcYiJTseU_QpGOOScZDb2CaxF_fdOH49jzUBr2ZABa2a2qtO23DgCjJy5T1XUh3_beD5hO5CdP4otVyKMnl3NMSGaH4f3pX_KWFJl1yuvv-QHN6yT1_4St7QP0jr2Os</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>HU, X. JOAN</creator><creator>LAGAKOS, STEPHEN W.</creator><creator>LOCKHART, RICHARD A.</creator><general>Oxford University Press</general><general>Biometrika Trust, University College London</general><general>Oxford University Press for Biometrika Trust</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090601</creationdate><title>Marginal analysis of panel counts through estimating functions</title><author>HU, X. JOAN ; LAGAKOS, STEPHEN W. ; LOCKHART, RICHARD A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-e6fdacc3f6a0cb42891e052646ec4a8c2832bb6385afd19e6b9a2f01e641e0893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Actuarial science</topic><topic>Algorithms</topic><topic>Analytical estimating</topic><topic>Applications</topic><topic>Biology, psychology, social sciences</topic><topic>Censorship</topic><topic>Consistent estimators</topic><topic>Counting process</topic><topic>Distribution theory</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Interval censoring</topic><topic>Interval estimators</topic><topic>Marginal analysis</topic><topic>Marginal mean function</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Nonparametric estimation</topic><topic>Nonparametric inference</topic><topic>Placebos</topic><topic>Poisson process</topic><topic>Probability and statistics</topic><topic>Quasi-score function</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HU, X. JOAN</creatorcontrib><creatorcontrib>LAGAKOS, STEPHEN W.</creatorcontrib><creatorcontrib>LOCKHART, RICHARD A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HU, X. JOAN</au><au>LAGAKOS, STEPHEN W.</au><au>LOCKHART, RICHARD A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marginal analysis of panel counts through estimating functions</atitle><jtitle>Biometrika</jtitle><addtitle>Biometrika</addtitle><date>2009-06-01</date><risdate>2009</risdate><volume>96</volume><issue>2</issue><spage>445</spage><epage>456</epage><pages>445-456</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><coden>BIOKAX</coden><abstract>We develop nonparametric estimation procedures for the marginal mean function of a counting process based on periodic observations, using two types of self-consistent estimating equations. The first is derived from the likelihood studied by Wellner &amp; Zhang (2000), assuming a Poisson counting process. It gives a nondecreasing estimator, which equals the nonparametric maximum likelihood estimator of Wellner &amp; Zhang and is consistent without the Poisson assumption. Motivated by the construction of parametric generalized estimating equations, the second type is a set of data-adaptive quasi-score functions, which are likelihood estimating functions under a mixed-Poisson assumption. We evaluate the procedures using simulation, and illustrate them with the data from a bladder cancer study.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>19543426</pmid><doi>10.1093/biomet/asp010</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2009-06, Vol.96 (2), p.445-456
issn 0006-3444
1464-3510
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2698463
source Oxford Journals Online; JSTOR Archival Journals
subjects Actuarial science
Algorithms
Analytical estimating
Applications
Biology, psychology, social sciences
Censorship
Consistent estimators
Counting process
Distribution theory
Estimators
Exact sciences and technology
General topics
Interval censoring
Interval estimators
Marginal analysis
Marginal mean function
Mathematical functions
Mathematics
Maximum likelihood estimation
Maximum likelihood estimators
Nonparametric estimation
Nonparametric inference
Placebos
Poisson process
Probability and statistics
Quasi-score function
Sciences and techniques of general use
Statistics
title Marginal analysis of panel counts through estimating functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marginal%20analysis%20of%20panel%20counts%20through%20estimating%20functions&rft.jtitle=Biometrika&rft.au=HU,%20X.%20JOAN&rft.date=2009-06-01&rft.volume=96&rft.issue=2&rft.spage=445&rft.epage=456&rft.pages=445-456&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/asp010&rft_dat=%3Cjstor_pubme%3E27798835%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c604t-e6fdacc3f6a0cb42891e052646ec4a8c2832bb6385afd19e6b9a2f01e641e0893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201696961&rft_id=info:pmid/19543426&rft_jstor_id=27798835&rft_oup_id=10.1093/biomet/asp010&rfr_iscdi=true