Loading…
Marginal analysis of panel counts through estimating functions
We develop nonparametric estimation procedures for the marginal mean function of a counting process based on periodic observations, using two types of self-consistent estimating equations. The first is derived from the likelihood studied by Wellner & Zhang (2000), assuming a Poisson counting pro...
Saved in:
Published in: | Biometrika 2009-06, Vol.96 (2), p.445-456 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c604t-e6fdacc3f6a0cb42891e052646ec4a8c2832bb6385afd19e6b9a2f01e641e0893 |
---|---|
cites | cdi_FETCH-LOGICAL-c604t-e6fdacc3f6a0cb42891e052646ec4a8c2832bb6385afd19e6b9a2f01e641e0893 |
container_end_page | 456 |
container_issue | 2 |
container_start_page | 445 |
container_title | Biometrika |
container_volume | 96 |
creator | HU, X. JOAN LAGAKOS, STEPHEN W. LOCKHART, RICHARD A. |
description | We develop nonparametric estimation procedures for the marginal mean function of a counting process based on periodic observations, using two types of self-consistent estimating equations. The first is derived from the likelihood studied by Wellner & Zhang (2000), assuming a Poisson counting process. It gives a nondecreasing estimator, which equals the nonparametric maximum likelihood estimator of Wellner & Zhang and is consistent without the Poisson assumption. Motivated by the construction of parametric generalized estimating equations, the second type is a set of data-adaptive quasi-score functions, which are likelihood estimating functions under a mixed-Poisson assumption. We evaluate the procedures using simulation, and illustrate them with the data from a bladder cancer study. |
doi_str_mv | 10.1093/biomet/asp010 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2698463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27798835</jstor_id><oup_id>10.1093/biomet/asp010</oup_id><sourcerecordid>27798835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-e6fdacc3f6a0cb42891e052646ec4a8c2832bb6385afd19e6b9a2f01e641e0893</originalsourceid><addsrcrecordid>eNqFkc-L1DAUx4Mo7uzq0aNSBMFL3aRJ3jSXhWVdd5T1x0FBvIQ0k85kbJuapIvz35vSMrN6kfDyEvLhm_e-D6FnBL8hWNDzyrrWxHMVekzwA7QgDFhOOcEP0QJjDDlljJ2g0xB24xU4PEYnRHBGWQELdPFR-Y3tVJOptO2DDZmrs151psm0G7oYsrj1bthsMxOibVW03Sarh05H67rwBD2qVRPM0zmfoW_vrr9erfLbzzfvry5vcw2YxdxAvVZa0xoU1hUrSkEM5gUwMJqpUhclLaoKaMlVvSbCQCVUUWNigCWwFPQMXUy6_VC1Zq1NF71qZO9TRX4vnbLy75fObuXG3ckCRMmAJoHXs4B3v4bUimxt0KZpUqduCJKUlHMGmIzoy3_QnRt8cifIAhMQaZEE5ROkvQvBm_pQC8FyHIycBiOnwST-w8R70xt9LHzoZ-5OUiUgbfsUBcYiJTseU_QpGOOScZDb2CaxF_fdOH49jzUBr2ZABa2a2qtO23DgCjJy5T1XUh3_beD5hO5CdP4otVyKMnl3NMSGaH4f3pX_KWFJl1yuvv-QHN6yT1_4St7QP0jr2Os</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201696961</pqid></control><display><type>article</type><title>Marginal analysis of panel counts through estimating functions</title><source>Oxford Journals Online</source><source>JSTOR Archival Journals</source><creator>HU, X. JOAN ; LAGAKOS, STEPHEN W. ; LOCKHART, RICHARD A.</creator><creatorcontrib>HU, X. JOAN ; LAGAKOS, STEPHEN W. ; LOCKHART, RICHARD A.</creatorcontrib><description>We develop nonparametric estimation procedures for the marginal mean function of a counting process based on periodic observations, using two types of self-consistent estimating equations. The first is derived from the likelihood studied by Wellner & Zhang (2000), assuming a Poisson counting process. It gives a nondecreasing estimator, which equals the nonparametric maximum likelihood estimator of Wellner & Zhang and is consistent without the Poisson assumption. Motivated by the construction of parametric generalized estimating equations, the second type is a set of data-adaptive quasi-score functions, which are likelihood estimating functions under a mixed-Poisson assumption. We evaluate the procedures using simulation, and illustrate them with the data from a bladder cancer study.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asp010</identifier><identifier>PMID: 19543426</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Actuarial science ; Algorithms ; Analytical estimating ; Applications ; Biology, psychology, social sciences ; Censorship ; Consistent estimators ; Counting process ; Distribution theory ; Estimators ; Exact sciences and technology ; General topics ; Interval censoring ; Interval estimators ; Marginal analysis ; Marginal mean function ; Mathematical functions ; Mathematics ; Maximum likelihood estimation ; Maximum likelihood estimators ; Nonparametric estimation ; Nonparametric inference ; Placebos ; Poisson process ; Probability and statistics ; Quasi-score function ; Sciences and techniques of general use ; Statistics</subject><ispartof>Biometrika, 2009-06, Vol.96 (2), p.445-456</ispartof><rights>2009 Biometrika Trust</rights><rights>Oxford University Press © 2009 Biometrika Trust 2009</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-e6fdacc3f6a0cb42891e052646ec4a8c2832bb6385afd19e6b9a2f01e641e0893</citedby><cites>FETCH-LOGICAL-c604t-e6fdacc3f6a0cb42891e052646ec4a8c2832bb6385afd19e6b9a2f01e641e0893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27798835$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27798835$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21543483$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19543426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/oupbiomet/v_3a96_3ay_3a2009_3ai_3a2_3ap_3a445-456.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>HU, X. JOAN</creatorcontrib><creatorcontrib>LAGAKOS, STEPHEN W.</creatorcontrib><creatorcontrib>LOCKHART, RICHARD A.</creatorcontrib><title>Marginal analysis of panel counts through estimating functions</title><title>Biometrika</title><addtitle>Biometrika</addtitle><description>We develop nonparametric estimation procedures for the marginal mean function of a counting process based on periodic observations, using two types of self-consistent estimating equations. The first is derived from the likelihood studied by Wellner & Zhang (2000), assuming a Poisson counting process. It gives a nondecreasing estimator, which equals the nonparametric maximum likelihood estimator of Wellner & Zhang and is consistent without the Poisson assumption. Motivated by the construction of parametric generalized estimating equations, the second type is a set of data-adaptive quasi-score functions, which are likelihood estimating functions under a mixed-Poisson assumption. We evaluate the procedures using simulation, and illustrate them with the data from a bladder cancer study.</description><subject>Actuarial science</subject><subject>Algorithms</subject><subject>Analytical estimating</subject><subject>Applications</subject><subject>Biology, psychology, social sciences</subject><subject>Censorship</subject><subject>Consistent estimators</subject><subject>Counting process</subject><subject>Distribution theory</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Interval censoring</subject><subject>Interval estimators</subject><subject>Marginal analysis</subject><subject>Marginal mean function</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Nonparametric estimation</subject><subject>Nonparametric inference</subject><subject>Placebos</subject><subject>Poisson process</subject><subject>Probability and statistics</subject><subject>Quasi-score function</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc-L1DAUx4Mo7uzq0aNSBMFL3aRJ3jSXhWVdd5T1x0FBvIQ0k85kbJuapIvz35vSMrN6kfDyEvLhm_e-D6FnBL8hWNDzyrrWxHMVekzwA7QgDFhOOcEP0QJjDDlljJ2g0xB24xU4PEYnRHBGWQELdPFR-Y3tVJOptO2DDZmrs151psm0G7oYsrj1bthsMxOibVW03Sarh05H67rwBD2qVRPM0zmfoW_vrr9erfLbzzfvry5vcw2YxdxAvVZa0xoU1hUrSkEM5gUwMJqpUhclLaoKaMlVvSbCQCVUUWNigCWwFPQMXUy6_VC1Zq1NF71qZO9TRX4vnbLy75fObuXG3ckCRMmAJoHXs4B3v4bUimxt0KZpUqduCJKUlHMGmIzoy3_QnRt8cifIAhMQaZEE5ROkvQvBm_pQC8FyHIycBiOnwST-w8R70xt9LHzoZ-5OUiUgbfsUBcYiJTseU_QpGOOScZDb2CaxF_fdOH49jzUBr2ZABa2a2qtO23DgCjJy5T1XUh3_beD5hO5CdP4otVyKMnl3NMSGaH4f3pX_KWFJl1yuvv-QHN6yT1_4St7QP0jr2Os</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>HU, X. JOAN</creator><creator>LAGAKOS, STEPHEN W.</creator><creator>LOCKHART, RICHARD A.</creator><general>Oxford University Press</general><general>Biometrika Trust, University College London</general><general>Oxford University Press for Biometrika Trust</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090601</creationdate><title>Marginal analysis of panel counts through estimating functions</title><author>HU, X. JOAN ; LAGAKOS, STEPHEN W. ; LOCKHART, RICHARD A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-e6fdacc3f6a0cb42891e052646ec4a8c2832bb6385afd19e6b9a2f01e641e0893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Actuarial science</topic><topic>Algorithms</topic><topic>Analytical estimating</topic><topic>Applications</topic><topic>Biology, psychology, social sciences</topic><topic>Censorship</topic><topic>Consistent estimators</topic><topic>Counting process</topic><topic>Distribution theory</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Interval censoring</topic><topic>Interval estimators</topic><topic>Marginal analysis</topic><topic>Marginal mean function</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Nonparametric estimation</topic><topic>Nonparametric inference</topic><topic>Placebos</topic><topic>Poisson process</topic><topic>Probability and statistics</topic><topic>Quasi-score function</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HU, X. JOAN</creatorcontrib><creatorcontrib>LAGAKOS, STEPHEN W.</creatorcontrib><creatorcontrib>LOCKHART, RICHARD A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HU, X. JOAN</au><au>LAGAKOS, STEPHEN W.</au><au>LOCKHART, RICHARD A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marginal analysis of panel counts through estimating functions</atitle><jtitle>Biometrika</jtitle><addtitle>Biometrika</addtitle><date>2009-06-01</date><risdate>2009</risdate><volume>96</volume><issue>2</issue><spage>445</spage><epage>456</epage><pages>445-456</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><coden>BIOKAX</coden><abstract>We develop nonparametric estimation procedures for the marginal mean function of a counting process based on periodic observations, using two types of self-consistent estimating equations. The first is derived from the likelihood studied by Wellner & Zhang (2000), assuming a Poisson counting process. It gives a nondecreasing estimator, which equals the nonparametric maximum likelihood estimator of Wellner & Zhang and is consistent without the Poisson assumption. Motivated by the construction of parametric generalized estimating equations, the second type is a set of data-adaptive quasi-score functions, which are likelihood estimating functions under a mixed-Poisson assumption. We evaluate the procedures using simulation, and illustrate them with the data from a bladder cancer study.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>19543426</pmid><doi>10.1093/biomet/asp010</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3444 |
ispartof | Biometrika, 2009-06, Vol.96 (2), p.445-456 |
issn | 0006-3444 1464-3510 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2698463 |
source | Oxford Journals Online; JSTOR Archival Journals |
subjects | Actuarial science Algorithms Analytical estimating Applications Biology, psychology, social sciences Censorship Consistent estimators Counting process Distribution theory Estimators Exact sciences and technology General topics Interval censoring Interval estimators Marginal analysis Marginal mean function Mathematical functions Mathematics Maximum likelihood estimation Maximum likelihood estimators Nonparametric estimation Nonparametric inference Placebos Poisson process Probability and statistics Quasi-score function Sciences and techniques of general use Statistics |
title | Marginal analysis of panel counts through estimating functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marginal%20analysis%20of%20panel%20counts%20through%20estimating%20functions&rft.jtitle=Biometrika&rft.au=HU,%20X.%20JOAN&rft.date=2009-06-01&rft.volume=96&rft.issue=2&rft.spage=445&rft.epage=456&rft.pages=445-456&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/asp010&rft_dat=%3Cjstor_pubme%3E27798835%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c604t-e6fdacc3f6a0cb42891e052646ec4a8c2832bb6385afd19e6b9a2f01e641e0893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201696961&rft_id=info:pmid/19543426&rft_jstor_id=27798835&rft_oup_id=10.1093/biomet/asp010&rfr_iscdi=true |