Loading…

Biomimetic approach to tissue engineering

The overall goal of tissue engineering is to create functional tissue grafts that can regenerate or replace our defective or worn out tissues and organs. Examples of grafts that are now in pre-clinical studies or clinical use include engineered skin, cartilage, bone, blood vessels, skeletal muscle,...

Full description

Saved in:
Bibliographic Details
Published in:Seminars in cell & developmental biology 2009-08, Vol.20 (6), p.665-673
Main Authors: Grayson, Warren L., Martens, Timothy P., Eng, George M., Radisic, Milica, Vunjak-Novakovic, Gordana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The overall goal of tissue engineering is to create functional tissue grafts that can regenerate or replace our defective or worn out tissues and organs. Examples of grafts that are now in pre-clinical studies or clinical use include engineered skin, cartilage, bone, blood vessels, skeletal muscle, bladder, trachea, and myocardium. Engineered tissues are also finding applications as platforms for pharmacological and physiological studies in vitro. To fully mobilize the cell's biological potential, a new generation of tissue engineering systems is now being developed to more closely recapitulate the native developmental milieu, and mimic the physiologic mechanisms of transport and signaling. We discuss the interactions between regenerative biology and engineering, in the context of (i) creation of functional tissue grafts for regenerative medicine (where biological input is critical), and (ii) studies of stem cells, development and disease (where engineered tissues can serve as advanced 3D models).
ISSN:1084-9521
1096-3634
DOI:10.1016/j.semcdb.2008.12.008