Loading…

Arrestin2/Clathrin Interaction Is Regulated by Key N- and C-Terminal Regions in Arrestin2

The interaction of nonvisual arrestins with clathrin is an important step in mediating the endocytosis of cell surface receptors. Previous studies have shown that mutation of the clathrin-binding box in arrestin leads to severe defects in arrestin-mediated trafficking. However, little is known about...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2009-08, Vol.48 (30), p.7190-7200
Main Authors: Kern, Ronald C, Kang, Dong Soo, Benovic, Jeffrey L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The interaction of nonvisual arrestins with clathrin is an important step in mediating the endocytosis of cell surface receptors. Previous studies have shown that mutation of the clathrin-binding box in arrestin leads to severe defects in arrestin-mediated trafficking. However, little is known about how arrestin/clathrin interaction is regulated. Here we show that both the N- and C-terminal regions of arrestin2 function to inhibit basal interaction with clathrin. Truncation analysis revealed that clathrin binding increases as the C-tail of arrestin2 is shortened while site-directed mutagenesis identified Glu-404, Glu-405, and Glu-406 as being primarily responsible for this inhibition. Mutagenesis also identified Lys-4, Arg-7, Lys-10, and Lys-11 within the N-terminus as playing a key role in regulating clathrin binding. Based on similarities with visual arrestin, Lys-10 and Lys-11 likely function as phospho sensors in arrestin2 to initially discriminate the phosphorylation status of target receptors. Analysis of the arrestin2 structure reveals that Arg-7, Lys-10, and Lys-11 are in close proximity to Glu-389 and Asp-390, suggesting that these residues may form intramolecular interactions. In fact, simultaneous mutation of Glu-389 and Asp-390 also leads to enhanced clathrin binding. These results reveal that multiple intramolecular interactions coordinately regulate arrestin2 interaction with clathrin, highlighting this interaction as a critical step in regulating receptor trafficking.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi900369c