Loading…

Cyclic stretch reduces myofibrillar protein synthesis despite increases in FAK and anabolic signalling in L6 cells

Muscle protein synthesis is increased after exercise, but evidence is now accruing that during muscular activity it is suppressed. In life, muscles are subjected to shortening forces due to contraction, but may also be subject to stretching forces during lengthening. It would be biologically ineffic...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of physiology 2009-07, Vol.587 (14), p.3719-3727
Main Authors: Atherton, P. J., Szewczyk, N. J., Selby, A., Rankin, D., Hillier, K., Smith, K., Rennie, M. J., Loughna, P. T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Muscle protein synthesis is increased after exercise, but evidence is now accruing that during muscular activity it is suppressed. In life, muscles are subjected to shortening forces due to contraction, but may also be subject to stretching forces during lengthening. It would be biologically inefficient if contraction and stretch have different effects on muscle protein turnover, but little is known about the metabolic effects of stretch. To investigate this, we assessed myofibrillar and sarcoplasmic protein synthesis (MPS, SPS, respectively) by incorporation of [1- 13 C]proline (using gas chromatography–mass spectrometry) and anabolic signalling (by phospho-immunoblotting and kinase assays) in cultured L6 skeletal muscle cells during 30 min of cyclic stretch and over 30 min intervals for up to 120 min afterwards. SPS was unaffected, whereas MPS was suppressed by 40 ± 0.03% during stretch, before returning to basal rates by 90–20 min afterwards. Paradoxically, stretch stimulated anabolic signalling with peak values after 2–30 min: e.g. focal adhesion kinase (FAK Tyr576/577; +28 ± 6%), protein kinase B activity (Akt; +113 ± 31%), p70S6K1 (ribosomal S6 kinase Thr389; 25 ± 5%), 4E binding protein 1 (4EBP1 Thr37/46; 14 ± 3%), eukaryotic elongation factor 2 (eEF2 Thr56; −47 ± 4%), extracellular regulated protein kinase 1/2 (ERK1/2 Tyr202/204; +65% ± 9%), eukaryotic initiation factor 2α (eIF2α Ser51; −20 ± 5%, P < 0.05) and eukaryotic initiation factor 4E (eIF4E Ser209; +33 ± 10%, P < 0.05). After stretch, except for Akt activity, stimulatory phosphorylations were sustained: e.g. FAK (+26 ± 11%) for ≥30 min, eEF2 for ≥60 min (peak −45 ± 4%), 4EBP1 for ≥90 min (+33 ± 5%), and p70S6K1 remained elevated throughout (peak +64 ± 7%). Adenosine monophosphate-activated protein kinase (AMPK) phosphorylation was unchanged throughout. We report for the first time that acute cyclic stretch specifically suppresses MPS, despite increases in activity/phosphorylation of elements thought to increase anabolism.
ISSN:0022-3751
1469-7793
DOI:10.1113/jphysiol.2009.169854