Loading…

N-Glycosylation Regulates Fibroblast Growth Factor Receptor/EGL-15 Activity in Caenorhabditis elegans in Vivo

The regulation of cell function by fibroblast growth factors (FGFs) classically occurs through a dual receptor system of a tyrosine kinase receptor (FGFR) and a heparan sulfate proteoglycan co-receptor. Mutations in some consensus N-glycosylation sites in human FGFR result in skeletal disorders and...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2009-11, Vol.284 (48), p.33030-33039
Main Authors: Polanska, Urszula M., Duchesne, Laurence, Harries, Janet C., Fernig, David G., Kinnunen, Tarja K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c561t-55509bd7c20e87283aa9d55e411a380f40117c43d271d4f9e5cc4dfa0a16c5603
cites cdi_FETCH-LOGICAL-c561t-55509bd7c20e87283aa9d55e411a380f40117c43d271d4f9e5cc4dfa0a16c5603
container_end_page 33039
container_issue 48
container_start_page 33030
container_title The Journal of biological chemistry
container_volume 284
creator Polanska, Urszula M.
Duchesne, Laurence
Harries, Janet C.
Fernig, David G.
Kinnunen, Tarja K.
description The regulation of cell function by fibroblast growth factors (FGFs) classically occurs through a dual receptor system of a tyrosine kinase receptor (FGFR) and a heparan sulfate proteoglycan co-receptor. Mutations in some consensus N-glycosylation sites in human FGFR result in skeletal disorders and craniosynostosis syndromes, and biophysical studies in vitro suggest that N-glycosylation of FGFR alters ligand and heparan sulfate binding properties. The evolutionarily conserved FGFR signaling system of Caenorhabditis elegans has been used to assess the role of N-glycosylation in the regulation of FGFR signaling in vivo. The C. elegans FGF receptor, EGL-15, is N-glycosylated in vivo, and genetic substitution of specific consensus N-glycosylation sites leads to defects in the maintenance of fluid homeostasis and differentiation of sex muscles, both of which are phenotypes previously associated with hyperactive EGL-15 signaling. These phenotypes are suppressed by hypoactive mutations in EGL-15 downstream signaling components or activating mutations in the phosphatidylinositol 3-kinase pathway, respectively. The results show that N-glycans negatively regulate FGFR activity in vivo supporting the notion that mutation of N-glycosylation sites in human FGFR may lead to inappropriate activation of the receptor.
doi_str_mv 10.1074/jbc.M109.058925
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2785143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820377371</els_id><sourcerecordid>19801543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-55509bd7c20e87283aa9d55e411a380f40117c43d271d4f9e5cc4dfa0a16c5603</originalsourceid><addsrcrecordid>eNp1kM9r2zAUx0VZabNu5902H3Z18p4lxfJlUEKTDdINtrX0JmRZtlUcK0hqSv77Kbjsx2G66KH3eV89PoS8Q5gjlGzxWOv5LUI1By6qgp-RGYKgOeX48IrMAArM07O4JK9DeIR0WIUX5BIrAcgZnZHd13wzHLULx0FF68bsu-meUmlCtra1d_WgQsw23j3HPlsrHZ1PiDb7VCxuNtsceXatoz3YeMzsmK2UGZ3vVd3YaENmBtOpMZw69_bg3pDzVg3BvH25r8jd-ubn6nO-_bb5srre5povMeacc6jqptQFGFEWgipVNZwbhqiogJYBYqkZbYoSG9ZWhmvNmlaBwmVKAHpFPk25-6d6ZxptxujVIPfe7pQ_Sqes_Lcz2l527iCLUnBkNAUspgDtXQjetL9nEeTJvEzm5cm8nMynifd_f_mHf1GdgI8T0Nuuf7beyNo63ZudLASTTEhKgZ5W_zBhrXJSdd4GefejAKSAJXAKy0RUE2GSwYM1XgZtzahNk0J1lI2z_93yFy4QqRo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>N-Glycosylation Regulates Fibroblast Growth Factor Receptor/EGL-15 Activity in Caenorhabditis elegans in Vivo</title><source>ScienceDirect</source><source>PubMed (Medline)</source><creator>Polanska, Urszula M. ; Duchesne, Laurence ; Harries, Janet C. ; Fernig, David G. ; Kinnunen, Tarja K.</creator><creatorcontrib>Polanska, Urszula M. ; Duchesne, Laurence ; Harries, Janet C. ; Fernig, David G. ; Kinnunen, Tarja K.</creatorcontrib><description>The regulation of cell function by fibroblast growth factors (FGFs) classically occurs through a dual receptor system of a tyrosine kinase receptor (FGFR) and a heparan sulfate proteoglycan co-receptor. Mutations in some consensus N-glycosylation sites in human FGFR result in skeletal disorders and craniosynostosis syndromes, and biophysical studies in vitro suggest that N-glycosylation of FGFR alters ligand and heparan sulfate binding properties. The evolutionarily conserved FGFR signaling system of Caenorhabditis elegans has been used to assess the role of N-glycosylation in the regulation of FGFR signaling in vivo. The C. elegans FGF receptor, EGL-15, is N-glycosylated in vivo, and genetic substitution of specific consensus N-glycosylation sites leads to defects in the maintenance of fluid homeostasis and differentiation of sex muscles, both of which are phenotypes previously associated with hyperactive EGL-15 signaling. These phenotypes are suppressed by hypoactive mutations in EGL-15 downstream signaling components or activating mutations in the phosphatidylinositol 3-kinase pathway, respectively. The results show that N-glycans negatively regulate FGFR activity in vivo supporting the notion that mutation of N-glycosylation sites in human FGFR may lead to inappropriate activation of the receptor.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.058925</identifier><identifier>PMID: 19801543</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Binding Sites - genetics ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Cell Differentiation ; Female ; Glycobiology and Extracellular Matrices ; Glycosylation ; Humans ; Male ; Microscopy, Fluorescence ; Molecular Sequence Data ; Muscle, Smooth - cytology ; Muscle, Smooth - metabolism ; Mutagenesis, Site-Directed ; Mutation ; Myoblasts - cytology ; Myoblasts - metabolism ; Receptors, Fibroblast Growth Factor - genetics ; Receptors, Fibroblast Growth Factor - metabolism ; Sequence Homology, Amino Acid ; Signal Transduction</subject><ispartof>The Journal of biological chemistry, 2009-11, Vol.284 (48), p.33030-33039</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2009 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-55509bd7c20e87283aa9d55e411a380f40117c43d271d4f9e5cc4dfa0a16c5603</citedby><cites>FETCH-LOGICAL-c561t-55509bd7c20e87283aa9d55e411a380f40117c43d271d4f9e5cc4dfa0a16c5603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785143/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820377371$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3535,27903,27904,45759,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19801543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Polanska, Urszula M.</creatorcontrib><creatorcontrib>Duchesne, Laurence</creatorcontrib><creatorcontrib>Harries, Janet C.</creatorcontrib><creatorcontrib>Fernig, David G.</creatorcontrib><creatorcontrib>Kinnunen, Tarja K.</creatorcontrib><title>N-Glycosylation Regulates Fibroblast Growth Factor Receptor/EGL-15 Activity in Caenorhabditis elegans in Vivo</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The regulation of cell function by fibroblast growth factors (FGFs) classically occurs through a dual receptor system of a tyrosine kinase receptor (FGFR) and a heparan sulfate proteoglycan co-receptor. Mutations in some consensus N-glycosylation sites in human FGFR result in skeletal disorders and craniosynostosis syndromes, and biophysical studies in vitro suggest that N-glycosylation of FGFR alters ligand and heparan sulfate binding properties. The evolutionarily conserved FGFR signaling system of Caenorhabditis elegans has been used to assess the role of N-glycosylation in the regulation of FGFR signaling in vivo. The C. elegans FGF receptor, EGL-15, is N-glycosylated in vivo, and genetic substitution of specific consensus N-glycosylation sites leads to defects in the maintenance of fluid homeostasis and differentiation of sex muscles, both of which are phenotypes previously associated with hyperactive EGL-15 signaling. These phenotypes are suppressed by hypoactive mutations in EGL-15 downstream signaling components or activating mutations in the phosphatidylinositol 3-kinase pathway, respectively. The results show that N-glycans negatively regulate FGFR activity in vivo supporting the notion that mutation of N-glycosylation sites in human FGFR may lead to inappropriate activation of the receptor.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Binding Sites - genetics</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Cell Differentiation</subject><subject>Female</subject><subject>Glycobiology and Extracellular Matrices</subject><subject>Glycosylation</subject><subject>Humans</subject><subject>Male</subject><subject>Microscopy, Fluorescence</subject><subject>Molecular Sequence Data</subject><subject>Muscle, Smooth - cytology</subject><subject>Muscle, Smooth - metabolism</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Myoblasts - cytology</subject><subject>Myoblasts - metabolism</subject><subject>Receptors, Fibroblast Growth Factor - genetics</subject><subject>Receptors, Fibroblast Growth Factor - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Signal Transduction</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kM9r2zAUx0VZabNu5902H3Z18p4lxfJlUEKTDdINtrX0JmRZtlUcK0hqSv77Kbjsx2G66KH3eV89PoS8Q5gjlGzxWOv5LUI1By6qgp-RGYKgOeX48IrMAArM07O4JK9DeIR0WIUX5BIrAcgZnZHd13wzHLULx0FF68bsu-meUmlCtra1d_WgQsw23j3HPlsrHZ1PiDb7VCxuNtsceXatoz3YeMzsmK2UGZ3vVd3YaENmBtOpMZw69_bg3pDzVg3BvH25r8jd-ubn6nO-_bb5srre5povMeacc6jqptQFGFEWgipVNZwbhqiogJYBYqkZbYoSG9ZWhmvNmlaBwmVKAHpFPk25-6d6ZxptxujVIPfe7pQ_Sqes_Lcz2l527iCLUnBkNAUspgDtXQjetL9nEeTJvEzm5cm8nMynifd_f_mHf1GdgI8T0Nuuf7beyNo63ZudLASTTEhKgZ5W_zBhrXJSdd4GefejAKSAJXAKy0RUE2GSwYM1XgZtzahNk0J1lI2z_93yFy4QqRo</recordid><startdate>20091127</startdate><enddate>20091127</enddate><creator>Polanska, Urszula M.</creator><creator>Duchesne, Laurence</creator><creator>Harries, Janet C.</creator><creator>Fernig, David G.</creator><creator>Kinnunen, Tarja K.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20091127</creationdate><title>N-Glycosylation Regulates Fibroblast Growth Factor Receptor/EGL-15 Activity in Caenorhabditis elegans in Vivo</title><author>Polanska, Urszula M. ; Duchesne, Laurence ; Harries, Janet C. ; Fernig, David G. ; Kinnunen, Tarja K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-55509bd7c20e87283aa9d55e411a380f40117c43d271d4f9e5cc4dfa0a16c5603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Binding Sites - genetics</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Cell Differentiation</topic><topic>Female</topic><topic>Glycobiology and Extracellular Matrices</topic><topic>Glycosylation</topic><topic>Humans</topic><topic>Male</topic><topic>Microscopy, Fluorescence</topic><topic>Molecular Sequence Data</topic><topic>Muscle, Smooth - cytology</topic><topic>Muscle, Smooth - metabolism</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Myoblasts - cytology</topic><topic>Myoblasts - metabolism</topic><topic>Receptors, Fibroblast Growth Factor - genetics</topic><topic>Receptors, Fibroblast Growth Factor - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polanska, Urszula M.</creatorcontrib><creatorcontrib>Duchesne, Laurence</creatorcontrib><creatorcontrib>Harries, Janet C.</creatorcontrib><creatorcontrib>Fernig, David G.</creatorcontrib><creatorcontrib>Kinnunen, Tarja K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polanska, Urszula M.</au><au>Duchesne, Laurence</au><au>Harries, Janet C.</au><au>Fernig, David G.</au><au>Kinnunen, Tarja K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N-Glycosylation Regulates Fibroblast Growth Factor Receptor/EGL-15 Activity in Caenorhabditis elegans in Vivo</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-11-27</date><risdate>2009</risdate><volume>284</volume><issue>48</issue><spage>33030</spage><epage>33039</epage><pages>33030-33039</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The regulation of cell function by fibroblast growth factors (FGFs) classically occurs through a dual receptor system of a tyrosine kinase receptor (FGFR) and a heparan sulfate proteoglycan co-receptor. Mutations in some consensus N-glycosylation sites in human FGFR result in skeletal disorders and craniosynostosis syndromes, and biophysical studies in vitro suggest that N-glycosylation of FGFR alters ligand and heparan sulfate binding properties. The evolutionarily conserved FGFR signaling system of Caenorhabditis elegans has been used to assess the role of N-glycosylation in the regulation of FGFR signaling in vivo. The C. elegans FGF receptor, EGL-15, is N-glycosylated in vivo, and genetic substitution of specific consensus N-glycosylation sites leads to defects in the maintenance of fluid homeostasis and differentiation of sex muscles, both of which are phenotypes previously associated with hyperactive EGL-15 signaling. These phenotypes are suppressed by hypoactive mutations in EGL-15 downstream signaling components or activating mutations in the phosphatidylinositol 3-kinase pathway, respectively. The results show that N-glycans negatively regulate FGFR activity in vivo supporting the notion that mutation of N-glycosylation sites in human FGFR may lead to inappropriate activation of the receptor.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19801543</pmid><doi>10.1074/jbc.M109.058925</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2009-11, Vol.284 (48), p.33030-33039
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2785143
source ScienceDirect; PubMed (Medline)
subjects Amino Acid Sequence
Animals
Animals, Genetically Modified
Binding Sites - genetics
Caenorhabditis elegans - genetics
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - genetics
Caenorhabditis elegans Proteins - metabolism
Cell Differentiation
Female
Glycobiology and Extracellular Matrices
Glycosylation
Humans
Male
Microscopy, Fluorescence
Molecular Sequence Data
Muscle, Smooth - cytology
Muscle, Smooth - metabolism
Mutagenesis, Site-Directed
Mutation
Myoblasts - cytology
Myoblasts - metabolism
Receptors, Fibroblast Growth Factor - genetics
Receptors, Fibroblast Growth Factor - metabolism
Sequence Homology, Amino Acid
Signal Transduction
title N-Glycosylation Regulates Fibroblast Growth Factor Receptor/EGL-15 Activity in Caenorhabditis elegans in Vivo
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N-Glycosylation%20Regulates%20Fibroblast%20Growth%20Factor%20Receptor/EGL-15%20Activity%20in%20Caenorhabditis%20elegans%20in%20Vivo&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Polanska,%20Urszula%20M.&rft.date=2009-11-27&rft.volume=284&rft.issue=48&rft.spage=33030&rft.epage=33039&rft.pages=33030-33039&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.058925&rft_dat=%3Cpubmed_cross%3E19801543%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c561t-55509bd7c20e87283aa9d55e411a380f40117c43d271d4f9e5cc4dfa0a16c5603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/19801543&rfr_iscdi=true