Loading…

Assessment of tissue oxygen saturation during a vascular occlusion test using near-infrared spectroscopy: the role of probe spacing and measurement site studied in healthy volunteers

To assess potential metabolic and microcirculatory alterations in critically ill patients, near-infrared spectroscopy (NIRS) has been used, in combination with a vascular occlusion test (VOT), for the non-invasive measurement of tissue oxygen saturation (StO2), oxygen consumption, and microvascular...

Full description

Saved in:
Bibliographic Details
Published in:Critical care (London, England) England), 2009-01, Vol.13 Suppl 5 (Suppl 5), p.S4-S4, Article S4
Main Authors: Bezemer, Rick, Lima, Alexandre, Myers, Dean, Klijn, Eva, Heger, Michal, Goedhart, Peter T, Bakker, Jan, Ince, Can
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To assess potential metabolic and microcirculatory alterations in critically ill patients, near-infrared spectroscopy (NIRS) has been used, in combination with a vascular occlusion test (VOT), for the non-invasive measurement of tissue oxygen saturation (StO2), oxygen consumption, and microvascular reperfusion and reactivity. The methodologies for assessing StO2 during a VOT, however, are very inconsistent in the literature and, consequently, results vary from study to study, making data comparison difficult and potentially inadequate. Two major aspects concerning the inconsistent methodology are measurement site and probe spacing. To address these issues, we investigated the effects of probe spacing and measurement site using 15 mm and 25 mm probe spacings on the thenar and the forearm in healthy volunteers and quantified baseline, ischemic, reperfusion, and hyperemic VOT-derived StO2 variables. StO2 was non-invasively measured in the forearm and thenar in eight healthy volunteers during 3-minute VOTs using two InSpectra tissue spectrometers equipped with a 15 mm probe or a 25 mm probe. VOT-derived StO2 traces were analyzed for base-line, ischemic, reperfusion, and hyperemic parameters. Data were categorized into four groups: 15 mm probe on the forearm (F15 mm), 25 mm probe on the forearm (F25 mm), 15 mm probe on the thenar (T15 mm), and 25 mm probe on the thenar (T25 mm). Although not apparent at baseline, probe spacing and measurement site significantly influenced VOT-derived StO2 variables. For F15 mm, F25 mm, T15 mm, and T25 mm, StO2 ownslope was -6.4 +/- 1.7%/minute, -10.0 +/- 3.2%/minute, -12.5 +/- 3.0%/minute, and -36.7 +/- 4.6%/minute, respectively. StO2 upslope was 105 +/- 34%/minute, 158 +/- 55%/minute, 226 +/- 41%/minute, and 713 +/- 101%/minute, and the area under the hyperemic curve was 7.4 +/- 3.8%.minute, 10.1 +/- 4.9%.minute, 12.6 +/- 4.4%.minute, and 21.2 +/- 2.7%.minute in these groups, respectively. Furthermore, the StO2 parameters of the hyperemic phase of the VOT, such as the area under the curve, significantly correlated to the minimum StO2 during ischemia. NIRS measurements in combination with a VOT are measurement site-dependent and probe-dependent. Whether this dependence is anatomy-, physiology-, or perhaps technology-related remains to be elucidated. Our study also indicated that reactive hyperemia depends on the extent of ischemic insult.
ISSN:1364-8535
1466-609X
1364-8535
DOI:10.1186/cc8002