Loading…
Selective Estrogen Receptor Modulator Delivery of Quinone Warheads to DNA Triggering Apoptosis in Breast Cancer Cells
Estrogen exposure is a risk factor for breast cancer, and estrogen oxidative metabolites have been implicated in chemical carcinogenesis. Oxidation of the catechol metabolite of estrone (4-OHE) and the β-naphthohydroquinone metabolite of equilenin (4-OHEN) gives o-quinones that produce ROS and damag...
Saved in:
Published in: | ACS chemical biology 2009-12, Vol.4 (12), p.1039-1049 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Estrogen exposure is a risk factor for breast cancer, and estrogen oxidative metabolites have been implicated in chemical carcinogenesis. Oxidation of the catechol metabolite of estrone (4-OHE) and the β-naphthohydroquinone metabolite of equilenin (4-OHEN) gives o-quinones that produce ROS and damage DNA by adduction and oxidation. To differentiate hormonal and chemical carcinogensis pathways in estrogen receptor positive ER(+) cells, catechol or β-naphthohydroquinone warheads were conjugated to the selective estrogen receptor modulator (SERM) desmethylarzoxifene (DMA). ER binding was retained in the DMA conjugates; both were antiestrogens with submicromolar potency in mammary and endometrial cells. Cytotoxicity, apoptosis, and caspase-3/7 activation were compared in ER(+) and ER(−)MDA-MB-231 cells, and production of ROS was detected using a fluorescent reporter. Comparison was made to DMA, isolated warheads, and a DMA-mustard. Conjugation of warheads to DMA increased cytotoxicity accompanied by induction of apoptosis and activation of caspase-3/7. Activation of caspase-3/7, induction of apoptosis, and cytotoxicity were all increased significantly in ER(+) cells for the DMA conjugates. ROS production was localized in the nucleus for conjugates in ER(+) cells. Observations are compatible with β-naphthohydroquinone and catechol groups being concentrated in the nucleus by ER binding, where oxidation and ROS production result, concomitant with caspase-dependent apoptosis. The results suggest that DNA damage induced by catechol estrogen metabolites can be amplified in ER(+) cells independent of hormonal activity. The novel conjugation of quinone warheads to an ER-targeting SERM gives ER-dependent, enhanced apoptosis in mammary cancer cells of potential application in cancer therapy. |
---|---|
ISSN: | 1554-8929 1554-8937 |
DOI: | 10.1021/cb9001848 |