Loading…

Sensory and sensorimotor gating-disruptive effects of apomorphine in Sprague Dawley and Long Evans rats

Rat strains differ in sensitivity to the disruptive effects of dopamine agonists on sensorimotor gating, measured by prepulse inhibition (PPI) of startle. For example, Sprague Dawley (SD) rats are more sensitive to PPI-disruptive effects of apomorphine (APO) compared to Long Evans (LE) rats; F1 (SD...

Full description

Saved in:
Bibliographic Details
Published in:Behavioural brain research 2010-04, Vol.208 (2), p.560-565
Main Authors: Breier, Michelle R., Lewis, Brittanni, Shoemaker, Jody M., Light, Gregory A., Swerdlow, Neal R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rat strains differ in sensitivity to the disruptive effects of dopamine agonists on sensorimotor gating, measured by prepulse inhibition (PPI) of startle. For example, Sprague Dawley (SD) rats are more sensitive to PPI-disruptive effects of apomorphine (APO) compared to Long Evans (LE) rats; F1 (SD Ă— LE) and N2 generations exhibit intermediate phenotypes. We reported that APO increased S2/S1 ratios and reduced S1 amplitudes of the N40 event-related potential (ERP) in SD rats, suggesting that it reduced sensory gating and/or sensory registration. Here, we investigated whether SD and LE rats differ in sensitivity to APO effects on N40 gating or amplitude. PPI and N40 gating were assessed contemporaneously in male SD and LE rats after APO, in a 4-day within-subject design. Compared to SD rats, LE rats were less sensitive to the PPI-disruptive effects of APO. APO increased S2/S1 ratios paralleled by a dose-dependent reduction in S1 amplitude; SD and LE rats did not differ significantly in this measure. No clear relationship was evident between APO effects on PPI and N40 gating, nor between APO effects on startle magnitude and S1 amplitude, across strains. SD and LE rats differ in their sensitivity to the disruptive effects of dopamine receptor activation on sensorimotor gating (PPI) but not sensory gating (N40 suppression) or sensory registration (S1 amplitude). These data suggest differences in both the neural and genetic regulation of dopamine agonist effects on these measures.
ISSN:0166-4328
1872-7549
DOI:10.1016/j.bbr.2009.12.037