Loading…

Involvement of β1-Integrin Up-regulation in Basic Fibroblast Growth Factor- and Epidermal Growth Factor-induced Proliferation of Mouse Neuroepithelial Cells

In neural stem cells, basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) promote cell proliferation and self-renewal. In the bFGF- and EGF-responsive neural stem cells, β1-integrin also plays important roles in crucial cellular processes, including proliferation, migration, and...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2010-06, Vol.285 (24), p.18443-18451
Main Authors: Suzuki, Yusuke, Yanagisawa, Makoto, Yagi, Hirokazu, Nakatani, Yoshihiko, Yu, Robert K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In neural stem cells, basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) promote cell proliferation and self-renewal. In the bFGF- and EGF-responsive neural stem cells, β1-integrin also plays important roles in crucial cellular processes, including proliferation, migration, and apoptosis. The cross-talk of the signaling pathways mediated by these growth factors and β1-integrin, however, has not been fully elucidated. Here we report a novel molecular mechanism through which bFGF or EGF promotes the proliferation of mouse neuroepithelial cells (NECs). In the NECs, total β1-integrin expression levels and proliferation were dose-dependently increased by bFGF but not by EGF. EGF rather than bFGF strongly induced the increase of β1-integrin localization on the NEC surface. bFGF- and EGF-induced β1-integrin up-regulation and proliferation were inhibited after treatment with a mitogen-activated protein kinase kinase inhibitor, U0126, which indicates the dependence on the mitogen-activated protein kinase pathway. Involvement of β1-integrin in bFGF- and EGF-induced proliferation was confirmed by the finding that NEC proliferation and adhesion to fibronectin-coated dishes were inhibited by knockdown of β1-integrin using small interfering RNA. On the other hand, apoptosis was induced in NECs treated with RGD peptide, a small β1-integrin inhibitor peptide with the Arg-Gly-Asp motif, but it was independent of β1-integrin expression levels. Those results suggest that regulation of β1-integrin expression/localization is involved in cellular processes, such as proliferation, induced by bFGF and EGF in NECs. The mechanism underlying the proliferation through β1-integrin would not be expected to be completely identical, however, for bFGF and EGF.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M110.114645