Loading…
Role for Hepatic and Circulatory ST6Gal-1 Sialyltransferase in Regulating Myelopoiesis
Recent findings have established a role for the ST6Gal-1 sialyltransferase in modulating inflammatory cell production during Th1 and Th2 responses. ST6Gal-1 synthesizes the Sia(α2,6) to Gal(β1,4)GlcNAc linkage on glycoproteins on cell surfaces and in systemic circulation. Engagement of P1, one of si...
Saved in:
Published in: | The Journal of biological chemistry 2010-08, Vol.285 (32), p.25009-25017 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent findings have established a role for the ST6Gal-1 sialyltransferase in modulating inflammatory cell production during Th1 and Th2 responses. ST6Gal-1 synthesizes the Sia(α2,6) to Gal(β1,4)GlcNAc linkage on glycoproteins on cell surfaces and in systemic circulation. Engagement of P1, one of six promoter/regulatory regions driving murine ST6Gal-1 gene expression, generates the ST6Gal-1 for myelopoietic regulation. P1 utilization, however, is restricted to the liver and silent in hematopoietic cells. We considered the possibility that myelopoiesis is responsive to the sialylation of liver-derived circulatory glycoproteins, such that reduced α2,6-sialylation results in elevated myelopoiesis. However, 2-dimensional differential in gel electrophoresis (2D-DIGE) analysis disclosed only minimal alterations in the sialylation of sera glycoproteins of ST6Gal-1-deficient mice when compared with wild-type controls, either at baseline or during an acute phase response when the demand for sialylation is greatest. Furthermore, sera from ST6Gal-1-deficient animals did not enhance myelopoietic activity in ex vivo colony formation assays. Whereas there was only minimal consequence to the α2,6-sialylation of circulatory glycoproteins, ablation of the P1 promoter did result in strikingly depressed levels of ST6Gal-1 released into systemic circulation. Therefore, we considered the alternative possibility that myelopoiesis may be regulated not by the hepatic sialyl glycoproteins, but by the ST6Gal-1 that was released directly into circulation. Supporting this, ex vivo colony formation was notably attenuated upon introduction of physiologic levels of ST6Gal-1 into the culture medium. Our data support the idea that circulatory ST6Gal-1, mostly of hepatic origin, limits myelopoiesis by a mechanism independent of hepatic sialylation of serum glycoproteins. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M110.104406 |