Loading…

Toxoplasma gondii Activates Hypoxia-inducible Factor (HIF) by Stabilizing the HIF-1α Subunit via Type I Activin-like Receptor Kinase Receptor Signaling

Toxoplasma gondii is an intracellular protozoan parasite that can cause devastating disease in fetuses and immune-compromised individuals. We previously reported that the α subunit of the host cell transcription factor, hypoxia-inducible factor-1 (HIF-1), is up-regulated by infection and necessary f...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2010-08, Vol.285 (35), p.26852-26860
Main Authors: Wiley, Mandi, Sweeney, Kristin R., Chan, Denise A., Brown, Kevin M., McMurtrey, Curtis, Howard, Eric W., Giaccia, Amato J., Blader, Ira J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Toxoplasma gondii is an intracellular protozoan parasite that can cause devastating disease in fetuses and immune-compromised individuals. We previously reported that the α subunit of the host cell transcription factor, hypoxia-inducible factor-1 (HIF-1), is up-regulated by infection and necessary for Toxoplasma growth. Under basal conditions, HIF-1α is constitutively expressed but rapidly targeted for proteasomal degradation after two proline residues are hydroxylated by a family of prolyl hydroxylases (PHDs). The PHDs are α-ketoglutarate-dependent dioxygenases that have low Km values for oxygen, making them important cellular oxygen sensors. Thus, when oxygen levels decrease, HIF-1α is not hydroxylated, and HIF-1 is activated. How Toxoplasma activates HIF-1 under normoxic conditions remains unknown. Here, we report that Toxoplasma infection increases HIF-1α stability by preventing HIF-1α prolyl hydroxylation. Infection significantly decreases PHD2 abundance, which is the key prolyl hydroxylase for regulating HIF-1α. The effects of Toxoplasma on HIF-1α abundance and prolyl hydroxylase activity require activin-like receptor kinase signaling. Finally, parasite growth is severely diminished when signaling from this family of receptors is inhibited. Together, these data indicate that PHD2 is a key host cell factor for T. gondii growth and represent a novel mechanism by which a microbial pathogen subverts host cell signaling and transcription to establish its replicative niche.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M110.147041