Loading…

Module-based prediction approach for robust inter-study predictions in microarray data

Motivation: Traditional genomic prediction models based on individual genes suffer from low reproducibility across microarray studies due to the lack of robustness to expression measurement noise and gene missingness when they are matched across platforms. It is common that some of the genes in the...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics 2010-10, Vol.26 (20), p.2586-2593
Main Authors: Mi, Zhibao, Shen, Kui, Song, Nan, Cheng, Chunrong, Song, Chi, Kaminski, Naftali, Tseng, George C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Motivation: Traditional genomic prediction models based on individual genes suffer from low reproducibility across microarray studies due to the lack of robustness to expression measurement noise and gene missingness when they are matched across platforms. It is common that some of the genes in the prediction model established in a training study cannot be matched to another test study because a different platform is applied. The failure of inter-study predictions has severely hindered the clinical applications of microarray. To overcome the drawbacks of traditional gene-based prediction (GBP) models, we propose a module-based prediction (MBP) strategy via unsupervised gene clustering. Results: K-means clustering is used to group genes sharing similar expression profiles into gene modules, and small modules are merged into their nearest neighbors. Conventional univariate or multivariate feature selection procedure is applied and a representative gene from each selected module is identified to construct the final prediction model. As a result, the prediction model is portable to any test study as long as partial genes in each module exist in the test study. We demonstrate that K-means cluster sizes generally follow a multinomial distribution and the failure probability of inter-study prediction due to missing genes is diminished by merging small clusters into their nearest neighbors. By simulation and applications of real datasets in inter-study predictions, we show that the proposed MBP provides slightly improved accuracy while is considerably more robust than traditional GBP. Availability: http://www.biostat.pitt.edu/bioinfo/ Contact: ctseng@pitt.edu Supplementary information: Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btq472