Loading…

Identification of a Novel Dynein Binding Domain in Nudel Essential for Spindle Pole Organization in Xenopus Egg Extract

The nuclear distribution protein E (NudE) and nuclear distribution protein E-like (Nudel or Ndel1) interact with both lissencephaly 1 (Lis1) and dynein. These interactions are thought to be essential for dynein function. Previous studies have shown that the highly conserved N terminus of NudE/Nudel...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2011-01, Vol.286 (1), p.587-593
Main Authors: Wang, Shusheng, Zheng, Yixian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The nuclear distribution protein E (NudE) and nuclear distribution protein E-like (Nudel or Ndel1) interact with both lissencephaly 1 (Lis1) and dynein. These interactions are thought to be essential for dynein function. Previous studies have shown that the highly conserved N terminus of NudE/Nudel directly binds to Lis1, and such binding is critical for dynein activity. By contrast, although the C terminus of NudE/Nudel was reported to bind to dynein, the functional significance of this binding has remained unclear. Using the sperm-mediated spindle assembly assay in Xenopus egg extracts and extensive mutagenesis studies, we have identified a highly conserved dynein binding domain within the first 80 amino acids of Nudel. We further demonstrate that the dynein intermediate chain in the dynein complex is directly involved in this interaction. Importantly, we show that both the dynein and Lis1 binding domains of Nudel are required for spindle pole organization. Finally, we report that spindle defects caused by immuno-depletion of Nudel could be rescued by a 1-fold increase of Lis1 concentration in Xenopus egg extracts. This suggests that an important function of the N terminus of Nudel is to facilitate the interaction between Lis1 and dynein during spindle assembly. Together, our findings open up new avenues to further decipher the mechanism of dynein regulation by Nudel and Lis1.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M110.181578