Loading…

Parallel excitation in the human brain at 9.4 T counteracting k-space errors with RF pulse design

Multidimensional spatially selective radiofrequency (RF) pulses have been proposed as a method to mitigate transmit B1 inhomogeneity in MR experiments. These RF pulses, however, have been considered impractical for many years because they typically require very long RF pulse durations. The recent de...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine 2010-02, Vol.63 (2), p.524-529
Main Authors: Wu, Xiaoping, Vaughan, J. Thomas, Uğurbil, Kâmil, Van de Moortele, Pierre-François
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multidimensional spatially selective radiofrequency (RF) pulses have been proposed as a method to mitigate transmit B1 inhomogeneity in MR experiments. These RF pulses, however, have been considered impractical for many years because they typically require very long RF pulse durations. The recent development of parallel excitation techniques makes it possible to design multidimensional RF pulses that are short enough for use in actual experiments. However, hardware and experimental imperfections can still severely alter the excitation patterns obtained with these accelerated pulses. In this note, we report at 9.4 T on a human eight‐channel transmit system, substantial improvements in two‐dimensional excitation pattern accuracy obtained when measuring k‐space trajectories prior to parallel transmit RF pulse design (acceleration ×4). Excitation patterns based on numerical simulations closely reproducing the experimental conditions were in good agreement with the experimental results. Magn Reson Med, 2010. © 2009 Wiley‐Liss, Inc.
ISSN:0740-3194
1522-2594
1522-2594
DOI:10.1002/mrm.22247