Loading…
Ciliopathy with special emphasis on kartageners syndrome
Cilia are hair-like structures extending from the cell membrane, perform diverse biological functions. Primary defects in the structure and function of sensory and motile cilia result in multiple ciliopathies. The most prominent genetic abnormality involving motile cilia is primary ciliary dyskinesi...
Saved in:
Published in: | International journal of health sciences 2009-01, Vol.3 (1), p.65-69 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cilia are hair-like structures extending from the cell membrane, perform diverse biological functions. Primary defects in the structure and function of sensory and motile cilia result in multiple ciliopathies. The most prominent genetic abnormality involving motile cilia is primary ciliary dyskinesia (PCD) or Kartageners syndrome. PCD is a rare, usually autosomal recessive, genetically heterogeneous disorder characterized by sino-pulmonary disease, laterality defects and male infertility. One of the important components of cilia is the Dynein. Ciliary ultrastructural defects are identified in approximately 90% of PCD patients and involve the outer dynein arms, inner dynein arms, or both. Diagnosing PCD is challenging and requires a compatible clinical phenotype together with tests such as ciliary ultrastructural analysis, immunofluorescent staining, ciliary beat assessment, and/or nasal nitric oxide measurements. Increased understanding of the pathogenesis will aid in better diagnosis and treatment of PCD. The aim of the article is to present the basic defect involved in the etiology of this interesting syndrome. |
---|---|
ISSN: | 1658-3639 |