Loading…

Invariance of firing rate and field potential dynamics to stimulus modulation rate in human auditory cortex

The effect of stimulus modulation rate on the underlying neural activity in human auditory cortex is not clear. Human studies (using both invasive and noninvasive techniques) have demonstrated that at the population level, auditory cortex follows stimulus envelope. Here we examined the effect of sti...

Full description

Saved in:
Bibliographic Details
Published in:Human brain mapping 2011-08, Vol.32 (8), p.1181-1193
Main Authors: Mukamel, Roy, Nir, Yuval, Harel, Michal, Arieli, Amos, Malach, Rafael, Fried, Itzhak
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of stimulus modulation rate on the underlying neural activity in human auditory cortex is not clear. Human studies (using both invasive and noninvasive techniques) have demonstrated that at the population level, auditory cortex follows stimulus envelope. Here we examined the effect of stimulus modulation rate by using a rare opportunity to record both spiking activity and local field potentials (LFP) in auditory cortex of patients during repeated presentations of an audio‐visual movie clip presented at normal, double, and quadruple speeds. Mean firing rate during evoked activity remained the same across speeds and the temporal response profile of firing rate modulations at increased stimulus speeds was a linearly scaled version of the response during slower speeds. Additionally, stimulus induced power modulation of local field potentials in the high gamma band (64–128 Hz) exhibited similar temporal scaling as the neuronal firing rate modulations. Our data confirm and extend previous studies in humans and anesthetized animals, supporting a model in which both firing rate, and high‐gamma LFP power modulations in auditory cortex follow the temporal envelope of the stimulus across different modulation rates. Hum Brain Mapp, 2011. © 2010 Wiley‐Liss, Inc.
ISSN:1065-9471
1097-0193
1097-0193
DOI:10.1002/hbm.21100