Loading…
Cutting edge: all-trans retinoic acid sustains the stability and function of natural regulatory T cells in an inflammatory milieu
Recent studies have demonstrated that plasticity of naturally occurring CD4(+)Foxp3(+) regulatory T cells (nTregs) may account for their inability to control chronic inflammation in established autoimmune diseases. All-trans retinoic acid (atRA), the active derivative of vitamin A, has been demonstr...
Saved in:
Published in: | The Journal of immunology (1950) 2010-09, Vol.185 (5), p.2675-2679 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent studies have demonstrated that plasticity of naturally occurring CD4(+)Foxp3(+) regulatory T cells (nTregs) may account for their inability to control chronic inflammation in established autoimmune diseases. All-trans retinoic acid (atRA), the active derivative of vitamin A, has been demonstrated to promote Foxp3(+) Treg differentiation and suppress Th17 development. In this study, we report a vital role of atRA in sustaining the stability and functionality of nTregs in the presence of IL-6. We found that nTregs treated with atRA were resistant to Th17 and other Th cell conversion and maintained Foxp3 expression and suppressive activity in the presence of IL-6 in vitro. atRA decreased IL-6R expression and signaling by nTregs. Of interest, adoptive transfer of nTregs even from arthritic mice treated with atRA suppressed progression of established collagen-induced arthritis. We suggest that nTregs treated with atRA may represent a novel treatment strategy to control established chronic immune-mediated inflammatory diseases. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.1000598 |