Loading…

Disruption of a Novel Krüppel-like Transcription Factor p300-regulated Pathway for Insulin Biosynthesis Revealed by Studies of the c.-331 INS Mutation Found in Neonatal Diabetes Mellitus

Krüppel-like transcription factors (KLFs) have elicited significant attention because of their regulation of essential biochemical pathways and, more recently, because of their fundamental role in the mechanisms of human diseases. Neonatal diabetes mellitus is a monogenic disorder with primary alter...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2011-08, Vol.286 (32), p.28414-28424
Main Authors: Bonnefond, Amélie, Lomberk, Gwen, Buttar, Navtej, Busiah, Kanetee, Vaillant, Emmanuel, Lobbens, Stéphane, Yengo, Loïc, Dechaume, Aurélie, Mignot, Brigitte, Simon, Albane, Scharfmann, Raphaël, Neve, Bernadette, Tanyolaç, Sinan, Hodoglugil, Ugur, Pattou, François, Cavé, Hélène, Iovanna, Juan, Stein, Roland, Polak, Michel, Vaxillaire, Martine, Froguel, Philippe, Urrutia, Raul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Krüppel-like transcription factors (KLFs) have elicited significant attention because of their regulation of essential biochemical pathways and, more recently, because of their fundamental role in the mechanisms of human diseases. Neonatal diabetes mellitus is a monogenic disorder with primary alterations in insulin secretion. We here describe a key biochemical mechanism that underlies neonatal diabetes mellitus insulin biosynthesis impairment, namely a homozygous mutation within the insulin gene (INS) promoter, c.-331C>G, which affects a novel KLF-binding site. The combination of careful expression profiling, electromobility shift assays, reporter experiments, and chromatin immunoprecipitation demonstrates that, among 16 different KLF proteins tested, KLF11 is the most reliable activator of this site. Congruently, the c.-331C>G INS mutation fails to bind KLF11, thus inhibiting activation by this transcription factor. Klf11−/− mice recapitulate the disruption in insulin production and blood levels observed in patients. Thus, these data demonstrate an important role for KLF11 in the regulation of INS transcription via the novel c.-331 KLF site. Lastly, our screening data raised the possibility that other members of the KLF family may also regulate this promoter under distinct, yet unidentified, cellular contexts. Collectively, this study underscores a key role for KLF proteins in biochemical mechanisms of human diseases, in particular, early infancy onset diabetes mellitus.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M110.215822