Loading…
Feasibility of Treating Irradiated Bone with Intramedullary Delivered Autologous Mesenchymal Stem Cells
Background. We aimed to explore (i) the short-term retention of intramedullary implanted mesenchymal stem cells BMSCs and (ii) their impact on the bone blood flow and metabolism in a rat model of hindlimb irradiation. Methods. Three months after 30 Gy irradiation, fourteen animals were referred into...
Saved in:
Published in: | BioMed research international 2011-01, Vol.2011 (2011), p.1-9 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background. We aimed to explore (i) the short-term retention of intramedullary implanted mesenchymal stem cells BMSCs and (ii) their impact on the bone blood flow and metabolism in a rat model of hindlimb irradiation. Methods. Three months after 30 Gy irradiation, fourteen animals were referred into 2 groups: a sham-operated group (n= 6) and a treated group (n= 8) in which 111In-labelled BMSCs (2×106 cells) were injected in irradiated tibias. Bone blood flow and metabolism were assessed by serial T99mc-HDP scintigraphy and 1-wk cell retention by recordings of T99mc/111In activities. Results. The amount of intramedullary implanted BMSCs was of 70% at 2 H, 40% at 48 H, and 38% at 168 H. Bone blood flow and bone metabolism were significantly increased during the first week after cell transplantation, but these effects were found to reduce at 2-mo followup. Conclusion. Short-term cell retention produced concomitant enhancement in irradiated bone blood flow and metabolism. |
---|---|
ISSN: | 1110-7243 2314-6133 1110-7251 2314-6141 |
DOI: | 10.1155/2011/560257 |