Loading…

The influence of carbohydrate–protein co‐ingestion following endurance exercise on myofibrillar and mitochondrial protein synthesis

Non‐technical summary  A single bout of exercise stimulates the production of new muscle proteins. Furthermore, ingesting protein in close proximity to exercise enhances the metabolic response. Long‐term exercise training promotes muscle adaptation, and the mode of exercise performed determines the...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of physiology 2011-08, Vol.589 (16), p.4011-4025
Main Authors: Breen, Leigh, Philp, Andrew, Witard, Oliver C., Jackman, Sarah R., Selby, Anna, Smith, Ken, Baar, Keith, Tipton, Kevin D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Non‐technical summary  A single bout of exercise stimulates the production of new muscle proteins. Furthermore, ingesting protein in close proximity to exercise enhances the metabolic response. Long‐term exercise training promotes muscle adaptation, and the mode of exercise performed determines the type of proteins that are made. To date, the types of proteins that are made when protein is ingested after endurance exercise are not known. We report that when well‐trained male cyclists ingest protein with a carbohydrate drink after a high‐intensity ride, production of proteins responsible for muscle contraction is increased. Proteins responsible for aerobic energy production are not responsive to protein feeding. Furthermore, specific signals within the muscle that control protein synthesis are responsive to protein ingestion, providing a potential mechanism to underpin our primary findings. These results suggest that protein feeding after intense endurance exercise may be important in maintaining the structural quality and power generating capacity of the muscle.   The aim of the present study was to determine mitochondrial and myofibrillar muscle protein synthesis (MPS) when carbohydrate (CHO) or carbohydrate plus protein (C+P) beverages were ingested following prolonged cycling exercise. The intracellular mechanisms thought to regulate MPS were also investigated. In a single‐blind, cross‐over study, 10 trained cyclists (age 29 ± 6 years, 66.5 ± 5.1 ml kg−1 min−1) completed two trials in a randomized order. Subjects cycled for 90 min at 77 ± 1% before ingesting a CHO (25 g of carbohydrate) or C+P (25 g carbohydrate + 10 g whey protein) beverage immediately and 30 min post‐exercise. A primed constant infusion of l‐[ring‐13C6]phenylalanine began 1.5h prior to exercise and continued until 4h post‐exercise. Muscle biopsy samples were obtained to determine myofibrillar and mitochondrial MPS and the phosphorylation of intracellular signalling proteins. Arterialized blood samples were obtained throughout the protocol. Plasma amino acid and urea concentrations increased following ingestion of C+P only. Serum insulin concentration increased more for C+P than CHO. Myofibrillar MPS was ∼35% greater for C+P compared with CHO (0.087 ± 0.007 and 0.057 ± 0.006%h−1, respectively; P= 0.025). Mitochondrial MPS rates were similar for C+P and CHO (0.082 ± 0.011 and 0.086 ± 0.018%h−1, respectively). mTORSer2448 phosphorylation was greater for C+P compared with CHO at 4h post‐e
ISSN:0022-3751
1469-7793
DOI:10.1113/jphysiol.2011.211888