Loading…

Comparative Lipidomic Analysis of Mouse and Human Brain with Alzheimer Disease

Lipids are key regulators of brain function and have been increasingly implicated in neurodegenerative disorders including Alzheimer disease (AD). Here, a systems-based approach was employed to determine the lipidome of brain tissues affected by AD. Specifically, we used liquid chromatography-mass s...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2012-01, Vol.287 (4), p.2678-2688
Main Authors: Chan, Robin B., Oliveira, Tiago G., Cortes, Etty P., Honig, Lawrence S., Duff, Karen E., Small, Scott A., Wenk, Markus R., Shui, Guanghou, Di Paolo, Gilbert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lipids are key regulators of brain function and have been increasingly implicated in neurodegenerative disorders including Alzheimer disease (AD). Here, a systems-based approach was employed to determine the lipidome of brain tissues affected by AD. Specifically, we used liquid chromatography-mass spectrometry to profile extracts from the prefrontal cortex, entorhinal cortex, and cerebellum of late-onset AD (LOAD) patients, as well as the forebrain of three transgenic familial AD (FAD) mouse models. Although the cerebellum lacked major alterations in lipid composition, we found an elevation of a signaling pool of diacylglycerol as well as sphingolipids in the prefrontal cortex of AD patients. Furthermore, the diseased entorhinal cortex showed specific enrichment of lysobisphosphatidic acid, sphingomyelin, the ganglioside GM3, and cholesterol esters, all of which suggest common pathogenic mechanisms associated with endolysosomal storage disorders. Importantly, a significant increase in cholesterol esters and GM3 was recapitulated in the transgenic FAD models, suggesting that these mice are relevant tools to study aberrant lipid metabolism of endolysosomal dysfunction associated with AD. Finally, genetic ablation of phospholipase D2, which rescues the synaptic and behavioral deficits of an FAD mouse model, fully normalizes GM3 levels. These data thus unmask a cross-talk between the metabolism of phosphatidic acid, the product of phospholipase D2, and gangliosides, and point to a central role of ganglioside anomalies in AD pathogenesis. Overall, our study highlights the hypothesis generating potential of lipidomics and identifies novel region-specific lipid anomalies potentially linked to AD pathogenesis. Background: Lipid dyshomeostasis has been linked to Alzheimer disease (AD). Results: Lipidomic analyses of brain tissue from AD patients reveal region-specific changes in multiple bioactive lipids, some of which are phenocopied in AD mouse models. Conclusion: Lipid anomalies observed in AD may be linked to pathogenesis, including endolysosomal dysfunction. Significance: This study highlights the hypothesis-generating potential of lipidomics and its applicability to other diseases.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M111.274142