Loading…
A SNP in Steroid Receptor Coactivator-1 Disrupts a GSK3β Phosphorylation Site and Is Associated with Altered Tamoxifen Response in Bone
The coregulator steroid receptor coactivator (SRC)-1 increases transcriptional activity of the estrogen receptor (ER) in a number of tissues including bone. Mice deficient in SRC-1 are osteopenic and display skeletal resistance to estrogen treatment. SRC-1 is also known to modulate effects of select...
Saved in:
Published in: | Molecular endocrinology (Baltimore, Md.) Md.), 2012-02, Vol.26 (2), p.220-227 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The coregulator steroid receptor coactivator (SRC)-1 increases transcriptional activity of the estrogen receptor (ER) in a number of tissues including bone. Mice deficient in SRC-1 are osteopenic and display skeletal resistance to estrogen treatment. SRC-1 is also known to modulate effects of selective ER modulators like tamoxifen. We hypothesized that single nucleotide polymorphisms (SNP) in SRC-1 may impact estrogen and/or tamoxifen action. Because the only nonsynonymous SNP in SRC-1 (rs1804645; P1272S) is located in an activation domain, it was examined for effects on estrogen and tamoxifen action. SRC-1 P1272S showed a decreased ability to coactivate ER compared with wild-type SRC-1 in multiple cell lines. Paradoxically, SRC-1 P1272S had an increased protein half-life. The Pro to Ser change disrupts a putative glycogen synthase 3 (GSK3)β phosphorylation site that was confirmed by in vitro kinase assays. Finally, knockdown of GSK3β increased SRC-1 protein levels, mimicking the loss of phosphorylation at P1272S. These findings are similar to the GSK3β-mediated phospho-ubiquitin clock previously described for the related coregulator SRC-3. To assess the potential clinical significance of this SNP, we examined whether there was an association between SRC-1 P1272S and selective ER modulators response in bone. SRC-1 P1272S was associated with a decrease in hip and lumbar bone mineral density in women receiving tamoxifen treatment, supporting our in vitro findings for decreased ER coactivation. In summary, we have identified a functional genetic variant of SRC-1 with decreased activity, resulting, at least in part, from the loss of a GSK3β phosphorylation site, which was also associated with decreased bone mineral density in tamoxifen-treated women. |
---|---|
ISSN: | 0888-8809 1944-9917 |
DOI: | 10.1210/me.2011-1032 |