Loading…
Effective Models of Periodically Driven Networks
Circadian rhythms are governed by a highly coupled, complex network of genes. Due to feedback within the network, any modification of the system's state requires coherent changes in several nodes. A model of the underlying network is necessary to compute these modifications. We use an effective...
Saved in:
Published in: | Biophysical journal 2011-12, Vol.101 (11), p.2563-2571 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Circadian rhythms are governed by a highly coupled, complex network of genes. Due to feedback within the network, any modification of the system's state requires coherent changes in several nodes. A model of the underlying network is necessary to compute these modifications. We use an effective modeling approach for this task. Rather than inferred biochemical interactions, our method utilizes microarray data from a group of mutants for its construction. With simulated data, we develop an effective model for a circadian network in a peripheral tissue, subject to driving by the suprachiasmatic nucleus, the mammalian pacemaker. The effective network can predict time-dependent gene expression levels in other mutants. |
---|---|
ISSN: | 0006-3495 1542-0086 |
DOI: | 10.1016/j.bpj.2011.10.008 |