Loading…

Modulation of gene expression using electrospun scaffolds with templated architecture

The fabrication of biomimetic scaffolds is a critical component to fulfill the promise of functional tissue‐engineered materials. We describe herein a simple technique, based on printed circuit board manufacturing, to produce novel templates for electrospinning scaffolds for tissue‐engineering appli...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical materials research. Part A 2012-06, Vol.100A (6), p.1605-1614
Main Authors: Karchin, A., Wang, Y-N., Sanders, J. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The fabrication of biomimetic scaffolds is a critical component to fulfill the promise of functional tissue‐engineered materials. We describe herein a simple technique, based on printed circuit board manufacturing, to produce novel templates for electrospinning scaffolds for tissue‐engineering applications. This technique facilitates fabrication of electrospun scaffolds with templated architecture, which we defined as a scaffold's bulk mechanical properties being driven by its fiber architecture. Electrospun scaffolds with templated architectures were characterized with regard to fiber alignment and mechanical properties. Fast Fourier transform analysis revealed a high degree of fiber alignment along the conducting traces of the templates. Mechanical testing showed that scaffolds demonstrated tunable mechanical properties as a function of templated architecture. Fibroblast‐seeded scaffolds were subjected to a peak strain of 3 or 10% at 0.5 Hz for 1 h. Exposing seeded scaffolds to the low strain magnitude (3%) significantly increased collagen I gene expression compared to the high strain magnitude (10%) in a scaffold architecture‐dependent manner. These experiments indicate that scaffolds with templated architectures can be produced, and modulation of gene expression is possible with templated architectures. This technology holds promise for the long‐term goal of creating tissue‐engineered replacements with the biomechanical and biochemical make‐up of native tissues. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 2012.
ISSN:1549-3296
1552-4965
DOI:10.1002/jbm.a.34102