Loading…

Long-term nicotine exposure depresses dopamine release in nonhuman primate nucleus accumbens

Tobacco use is a leading cause of preventable deaths worldwide. However, current smoking cessation therapies have very limited long-term success rates. Considerable research effort is therefore focused on identification of central nervous system changes with nicotine exposure because this may lead t...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of pharmacology and experimental therapeutics 2012-08, Vol.342 (2), p.335-344
Main Authors: Perez, Xiomara A, Ly, Jason, McIntosh, J Michael, Quik, Maryka
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tobacco use is a leading cause of preventable deaths worldwide. However, current smoking cessation therapies have very limited long-term success rates. Considerable research effort is therefore focused on identification of central nervous system changes with nicotine exposure because this may lead to more successful treatment options. Although recent work suggests that α6β2* nicotinic acetylcholine receptors (nAChRs) play a dominant role in dopaminergic function in rodent nucleus accumbens, the effects of long-term nicotine exposure remain to be determined. Here, we used cyclic voltammetry to investigate α6β2* nAChR-mediated release with long-term nicotine treatment in nonhuman primate nucleus accumbens shell. Control studies showed that nAChR-mediated dopamine release occurs predominantly through the α6β2* receptor subtype. Unexpectedly, there was a complete loss of α6β2* nAChR-mediated activity after several months of nicotine treatment. This decline in function was observed with both single- and multiple-pulse-stimulated dopamine release. Paired-pulse studies showed that the facilitation of dopamine release with multiple pulsing observed in controls in the presence of nAChR antagonist was lost with long-term nicotine treatment. Nicotine-evoked [(3)H]dopamine release from nucleus accumbens synaptosomes was similar in nicotine- and vehicle-treated monkeys, indicating that long-term nicotine administration does not directly modify α6β2* nAChR-mediated dopamine release. Dopamine uptake rates, as well as dopamine transporter and α6β2* nAChRs levels, were also not changed with nicotine administration. These data indicate that nicotine exposure, as occurs with smoking, has major effects on cellular mechanisms linked to α6β2* nAChR-mediated dopamine release and that this receptor subtype may represent a novel therapeutic target for smoking cessation.
ISSN:0022-3565
1521-0103
DOI:10.1124/jpet.112.194084