Loading…

Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry

Currently there are few ideal methods for the characterization of nanoparticles in complex, environmental samples, leading to significant gaps in toxicity and exposure assessments of nanomaterials. Single particle-inductively coupled plasma-mass spectrometry (spICPMS) is an emerging technique that c...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2011-12, Vol.83 (24), p.9361-9369
Main Authors: Pace, Heather E, Rogers, Nicola J, Jarolimek, Chad, Coleman, Victoria A, Higgins, Christopher P, Ranville, James F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a561t-a9523629c4a88dcbff1a375e96b6902d62a4b6d4ea20f0861684b25029ab26123
cites cdi_FETCH-LOGICAL-a561t-a9523629c4a88dcbff1a375e96b6902d62a4b6d4ea20f0861684b25029ab26123
container_end_page 9369
container_issue 24
container_start_page 9361
container_title Analytical chemistry (Washington)
container_volume 83
creator Pace, Heather E
Rogers, Nicola J
Jarolimek, Chad
Coleman, Victoria A
Higgins, Christopher P
Ranville, James F
description Currently there are few ideal methods for the characterization of nanoparticles in complex, environmental samples, leading to significant gaps in toxicity and exposure assessments of nanomaterials. Single particle-inductively coupled plasma-mass spectrometry (spICPMS) is an emerging technique that can both size and count metal-containing nanoparticles. A major benefit of the spICPMS method is its ability to characterize nanoparticles at concentrations relevant to the environment. This paper presents a practical guide on how to count and size nanoparticles using spICPMS. Different methods are investigated for measuring transport efficiency (i.e., nebulization efficiency), an important term in the spICPMS calculations. In addition, an alternative protocol is provided for determining particle size that broadens the applicability of the technique to all types of inorganic nanoparticles. Initial comparison, using well-characterized, monodisperse silver nanoparticles, showed the importance of having an accurate transport efficiency value when determining particle number concentration and, if using the newly presented protocol, particle size. Ultimately, the goal of this paper is to provide improvements to nanometrology by further developing this technique for the characterization of metal-containing nanoparticles.
doi_str_mv 10.1021/ac201952t
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3410750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692371291</sourcerecordid><originalsourceid>FETCH-LOGICAL-a561t-a9523629c4a88dcbff1a375e96b6902d62a4b6d4ea20f0861684b25029ab26123</originalsourceid><addsrcrecordid>eNplkcFu1DAQhiMEokvhwAsgSwgJDgvjSeIkFyS0FKhUoFLL2Zo49tZVYqe2s9LyIDwvWXXZFjiNNfPN73_0Z9lzDm85IH9HCoE3JaYH2YKXCEtR1_gwWwBAvsQK4Ch7EuM1AOfAxePsCBGqoqjFIvv1UScdBuusW7PLQC6OPiR2YoxVVju1ZcYHlq40O5_C6KNm3rCVn1zaLZDr2IX9uXt-I-dHCsmqXke2sTQP3Lqf9_ZNduq6SSW70f12pzD2umPnPcWB2FeKkV2MWqXgB53C9mn2yFAf9bN9Pc5-fDq5XH1Znn3_fLr6cLakUvC0pPnoXGCjCqrrTrXGcMqrUjeiFQ1gJ5CKVnSFJgQDteCiLlosARtqUXDMj7P3t7rj1A66U9qlQL0cgx0obKUnK_-eOHsl134j84JDVcIs8HovEPzNpGOSg41K9z057acouWgwrzg2fEZf_oNe-ym4-TzJyxLrOkfezNSbW0oFH2PQ5mCGg9ylLQ9pz-yL--4P5J94Z-DVHqCoqDdzvsrGO67EpqlEfceRivdc_ffhb_52wGE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552883219</pqid></control><display><type>article</type><title>Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Pace, Heather E ; Rogers, Nicola J ; Jarolimek, Chad ; Coleman, Victoria A ; Higgins, Christopher P ; Ranville, James F</creator><creatorcontrib>Pace, Heather E ; Rogers, Nicola J ; Jarolimek, Chad ; Coleman, Victoria A ; Higgins, Christopher P ; Ranville, James F</creatorcontrib><description>Currently there are few ideal methods for the characterization of nanoparticles in complex, environmental samples, leading to significant gaps in toxicity and exposure assessments of nanomaterials. Single particle-inductively coupled plasma-mass spectrometry (spICPMS) is an emerging technique that can both size and count metal-containing nanoparticles. A major benefit of the spICPMS method is its ability to characterize nanoparticles at concentrations relevant to the environment. This paper presents a practical guide on how to count and size nanoparticles using spICPMS. Different methods are investigated for measuring transport efficiency (i.e., nebulization efficiency), an important term in the spICPMS calculations. In addition, an alternative protocol is provided for determining particle size that broadens the applicability of the technique to all types of inorganic nanoparticles. Initial comparison, using well-characterized, monodisperse silver nanoparticles, showed the importance of having an accurate transport efficiency value when determining particle number concentration and, if using the newly presented protocol, particle size. Ultimately, the goal of this paper is to provide improvements to nanometrology by further developing this technique for the characterization of metal-containing nanoparticles.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac201952t</identifier><identifier>PMID: 22074486</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Applied sciences ; Assessments ; Chemistry ; Computational efficiency ; Computing time ; Counting ; Exact sciences and technology ; Global environmental pollution ; Mass spectrometry ; Mass Spectrometry - instrumentation ; Mass Spectrometry - methods ; Metal Nanoparticles - chemistry ; Metals - chemistry ; Models, Theoretical ; Nanoparticles ; Particle Size ; Plasma ; Pollution ; Protocol ; Silver - chemistry ; Spectrometric and optical methods ; Toxicity ; Transport</subject><ispartof>Analytical chemistry (Washington), 2011-12, Vol.83 (24), p.9361-9369</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Dec 15, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a561t-a9523629c4a88dcbff1a375e96b6902d62a4b6d4ea20f0861684b25029ab26123</citedby><cites>FETCH-LOGICAL-a561t-a9523629c4a88dcbff1a375e96b6902d62a4b6d4ea20f0861684b25029ab26123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25299768$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22074486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pace, Heather E</creatorcontrib><creatorcontrib>Rogers, Nicola J</creatorcontrib><creatorcontrib>Jarolimek, Chad</creatorcontrib><creatorcontrib>Coleman, Victoria A</creatorcontrib><creatorcontrib>Higgins, Christopher P</creatorcontrib><creatorcontrib>Ranville, James F</creatorcontrib><title>Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Currently there are few ideal methods for the characterization of nanoparticles in complex, environmental samples, leading to significant gaps in toxicity and exposure assessments of nanomaterials. Single particle-inductively coupled plasma-mass spectrometry (spICPMS) is an emerging technique that can both size and count metal-containing nanoparticles. A major benefit of the spICPMS method is its ability to characterize nanoparticles at concentrations relevant to the environment. This paper presents a practical guide on how to count and size nanoparticles using spICPMS. Different methods are investigated for measuring transport efficiency (i.e., nebulization efficiency), an important term in the spICPMS calculations. In addition, an alternative protocol is provided for determining particle size that broadens the applicability of the technique to all types of inorganic nanoparticles. Initial comparison, using well-characterized, monodisperse silver nanoparticles, showed the importance of having an accurate transport efficiency value when determining particle number concentration and, if using the newly presented protocol, particle size. Ultimately, the goal of this paper is to provide improvements to nanometrology by further developing this technique for the characterization of metal-containing nanoparticles.</description><subject>Analytical chemistry</subject><subject>Applied sciences</subject><subject>Assessments</subject><subject>Chemistry</subject><subject>Computational efficiency</subject><subject>Computing time</subject><subject>Counting</subject><subject>Exact sciences and technology</subject><subject>Global environmental pollution</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - instrumentation</subject><subject>Mass Spectrometry - methods</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metals - chemistry</subject><subject>Models, Theoretical</subject><subject>Nanoparticles</subject><subject>Particle Size</subject><subject>Plasma</subject><subject>Pollution</subject><subject>Protocol</subject><subject>Silver - chemistry</subject><subject>Spectrometric and optical methods</subject><subject>Toxicity</subject><subject>Transport</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNplkcFu1DAQhiMEokvhwAsgSwgJDgvjSeIkFyS0FKhUoFLL2Zo49tZVYqe2s9LyIDwvWXXZFjiNNfPN73_0Z9lzDm85IH9HCoE3JaYH2YKXCEtR1_gwWwBAvsQK4Ch7EuM1AOfAxePsCBGqoqjFIvv1UScdBuusW7PLQC6OPiR2YoxVVju1ZcYHlq40O5_C6KNm3rCVn1zaLZDr2IX9uXt-I-dHCsmqXke2sTQP3Lqf9_ZNduq6SSW70f12pzD2umPnPcWB2FeKkV2MWqXgB53C9mn2yFAf9bN9Pc5-fDq5XH1Znn3_fLr6cLakUvC0pPnoXGCjCqrrTrXGcMqrUjeiFQ1gJ5CKVnSFJgQDteCiLlosARtqUXDMj7P3t7rj1A66U9qlQL0cgx0obKUnK_-eOHsl134j84JDVcIs8HovEPzNpGOSg41K9z057acouWgwrzg2fEZf_oNe-ym4-TzJyxLrOkfezNSbW0oFH2PQ5mCGg9ylLQ9pz-yL--4P5J94Z-DVHqCoqDdzvsrGO67EpqlEfceRivdc_ffhb_52wGE</recordid><startdate>20111215</startdate><enddate>20111215</enddate><creator>Pace, Heather E</creator><creator>Rogers, Nicola J</creator><creator>Jarolimek, Chad</creator><creator>Coleman, Victoria A</creator><creator>Higgins, Christopher P</creator><creator>Ranville, James F</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20111215</creationdate><title>Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry</title><author>Pace, Heather E ; Rogers, Nicola J ; Jarolimek, Chad ; Coleman, Victoria A ; Higgins, Christopher P ; Ranville, James F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a561t-a9523629c4a88dcbff1a375e96b6902d62a4b6d4ea20f0861684b25029ab26123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical chemistry</topic><topic>Applied sciences</topic><topic>Assessments</topic><topic>Chemistry</topic><topic>Computational efficiency</topic><topic>Computing time</topic><topic>Counting</topic><topic>Exact sciences and technology</topic><topic>Global environmental pollution</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - instrumentation</topic><topic>Mass Spectrometry - methods</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metals - chemistry</topic><topic>Models, Theoretical</topic><topic>Nanoparticles</topic><topic>Particle Size</topic><topic>Plasma</topic><topic>Pollution</topic><topic>Protocol</topic><topic>Silver - chemistry</topic><topic>Spectrometric and optical methods</topic><topic>Toxicity</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pace, Heather E</creatorcontrib><creatorcontrib>Rogers, Nicola J</creatorcontrib><creatorcontrib>Jarolimek, Chad</creatorcontrib><creatorcontrib>Coleman, Victoria A</creatorcontrib><creatorcontrib>Higgins, Christopher P</creatorcontrib><creatorcontrib>Ranville, James F</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pace, Heather E</au><au>Rogers, Nicola J</au><au>Jarolimek, Chad</au><au>Coleman, Victoria A</au><au>Higgins, Christopher P</au><au>Ranville, James F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2011-12-15</date><risdate>2011</risdate><volume>83</volume><issue>24</issue><spage>9361</spage><epage>9369</epage><pages>9361-9369</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Currently there are few ideal methods for the characterization of nanoparticles in complex, environmental samples, leading to significant gaps in toxicity and exposure assessments of nanomaterials. Single particle-inductively coupled plasma-mass spectrometry (spICPMS) is an emerging technique that can both size and count metal-containing nanoparticles. A major benefit of the spICPMS method is its ability to characterize nanoparticles at concentrations relevant to the environment. This paper presents a practical guide on how to count and size nanoparticles using spICPMS. Different methods are investigated for measuring transport efficiency (i.e., nebulization efficiency), an important term in the spICPMS calculations. In addition, an alternative protocol is provided for determining particle size that broadens the applicability of the technique to all types of inorganic nanoparticles. Initial comparison, using well-characterized, monodisperse silver nanoparticles, showed the importance of having an accurate transport efficiency value when determining particle number concentration and, if using the newly presented protocol, particle size. Ultimately, the goal of this paper is to provide improvements to nanometrology by further developing this technique for the characterization of metal-containing nanoparticles.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22074486</pmid><doi>10.1021/ac201952t</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2011-12, Vol.83 (24), p.9361-9369
issn 0003-2700
1520-6882
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3410750
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Analytical chemistry
Applied sciences
Assessments
Chemistry
Computational efficiency
Computing time
Counting
Exact sciences and technology
Global environmental pollution
Mass spectrometry
Mass Spectrometry - instrumentation
Mass Spectrometry - methods
Metal Nanoparticles - chemistry
Metals - chemistry
Models, Theoretical
Nanoparticles
Particle Size
Plasma
Pollution
Protocol
Silver - chemistry
Spectrometric and optical methods
Toxicity
Transport
title Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20Transport%20Efficiency%20for%20the%20Purpose%20of%20Counting%20and%20Sizing%20Nanoparticles%20via%20Single%20Particle%20Inductively%20Coupled%20Plasma%20Mass%20Spectrometry&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Pace,%20Heather%20E&rft.date=2011-12-15&rft.volume=83&rft.issue=24&rft.spage=9361&rft.epage=9369&rft.pages=9361-9369&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac201952t&rft_dat=%3Cproquest_pubme%3E1692371291%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a561t-a9523629c4a88dcbff1a375e96b6902d62a4b6d4ea20f0861684b25029ab26123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1552883219&rft_id=info:pmid/22074486&rfr_iscdi=true