Loading…
Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry
Currently there are few ideal methods for the characterization of nanoparticles in complex, environmental samples, leading to significant gaps in toxicity and exposure assessments of nanomaterials. Single particle-inductively coupled plasma-mass spectrometry (spICPMS) is an emerging technique that c...
Saved in:
Published in: | Analytical chemistry (Washington) 2011-12, Vol.83 (24), p.9361-9369 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a561t-a9523629c4a88dcbff1a375e96b6902d62a4b6d4ea20f0861684b25029ab26123 |
---|---|
cites | cdi_FETCH-LOGICAL-a561t-a9523629c4a88dcbff1a375e96b6902d62a4b6d4ea20f0861684b25029ab26123 |
container_end_page | 9369 |
container_issue | 24 |
container_start_page | 9361 |
container_title | Analytical chemistry (Washington) |
container_volume | 83 |
creator | Pace, Heather E Rogers, Nicola J Jarolimek, Chad Coleman, Victoria A Higgins, Christopher P Ranville, James F |
description | Currently there are few ideal methods for the characterization of nanoparticles in complex, environmental samples, leading to significant gaps in toxicity and exposure assessments of nanomaterials. Single particle-inductively coupled plasma-mass spectrometry (spICPMS) is an emerging technique that can both size and count metal-containing nanoparticles. A major benefit of the spICPMS method is its ability to characterize nanoparticles at concentrations relevant to the environment. This paper presents a practical guide on how to count and size nanoparticles using spICPMS. Different methods are investigated for measuring transport efficiency (i.e., nebulization efficiency), an important term in the spICPMS calculations. In addition, an alternative protocol is provided for determining particle size that broadens the applicability of the technique to all types of inorganic nanoparticles. Initial comparison, using well-characterized, monodisperse silver nanoparticles, showed the importance of having an accurate transport efficiency value when determining particle number concentration and, if using the newly presented protocol, particle size. Ultimately, the goal of this paper is to provide improvements to nanometrology by further developing this technique for the characterization of metal-containing nanoparticles. |
doi_str_mv | 10.1021/ac201952t |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3410750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692371291</sourcerecordid><originalsourceid>FETCH-LOGICAL-a561t-a9523629c4a88dcbff1a375e96b6902d62a4b6d4ea20f0861684b25029ab26123</originalsourceid><addsrcrecordid>eNplkcFu1DAQhiMEokvhwAsgSwgJDgvjSeIkFyS0FKhUoFLL2Zo49tZVYqe2s9LyIDwvWXXZFjiNNfPN73_0Z9lzDm85IH9HCoE3JaYH2YKXCEtR1_gwWwBAvsQK4Ch7EuM1AOfAxePsCBGqoqjFIvv1UScdBuusW7PLQC6OPiR2YoxVVju1ZcYHlq40O5_C6KNm3rCVn1zaLZDr2IX9uXt-I-dHCsmqXke2sTQP3Lqf9_ZNduq6SSW70f12pzD2umPnPcWB2FeKkV2MWqXgB53C9mn2yFAf9bN9Pc5-fDq5XH1Znn3_fLr6cLakUvC0pPnoXGCjCqrrTrXGcMqrUjeiFQ1gJ5CKVnSFJgQDteCiLlosARtqUXDMj7P3t7rj1A66U9qlQL0cgx0obKUnK_-eOHsl134j84JDVcIs8HovEPzNpGOSg41K9z057acouWgwrzg2fEZf_oNe-ym4-TzJyxLrOkfezNSbW0oFH2PQ5mCGg9ylLQ9pz-yL--4P5J94Z-DVHqCoqDdzvsrGO67EpqlEfceRivdc_ffhb_52wGE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552883219</pqid></control><display><type>article</type><title>Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Pace, Heather E ; Rogers, Nicola J ; Jarolimek, Chad ; Coleman, Victoria A ; Higgins, Christopher P ; Ranville, James F</creator><creatorcontrib>Pace, Heather E ; Rogers, Nicola J ; Jarolimek, Chad ; Coleman, Victoria A ; Higgins, Christopher P ; Ranville, James F</creatorcontrib><description>Currently there are few ideal methods for the characterization of nanoparticles in complex, environmental samples, leading to significant gaps in toxicity and exposure assessments of nanomaterials. Single particle-inductively coupled plasma-mass spectrometry (spICPMS) is an emerging technique that can both size and count metal-containing nanoparticles. A major benefit of the spICPMS method is its ability to characterize nanoparticles at concentrations relevant to the environment. This paper presents a practical guide on how to count and size nanoparticles using spICPMS. Different methods are investigated for measuring transport efficiency (i.e., nebulization efficiency), an important term in the spICPMS calculations. In addition, an alternative protocol is provided for determining particle size that broadens the applicability of the technique to all types of inorganic nanoparticles. Initial comparison, using well-characterized, monodisperse silver nanoparticles, showed the importance of having an accurate transport efficiency value when determining particle number concentration and, if using the newly presented protocol, particle size. Ultimately, the goal of this paper is to provide improvements to nanometrology by further developing this technique for the characterization of metal-containing nanoparticles.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac201952t</identifier><identifier>PMID: 22074486</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Applied sciences ; Assessments ; Chemistry ; Computational efficiency ; Computing time ; Counting ; Exact sciences and technology ; Global environmental pollution ; Mass spectrometry ; Mass Spectrometry - instrumentation ; Mass Spectrometry - methods ; Metal Nanoparticles - chemistry ; Metals - chemistry ; Models, Theoretical ; Nanoparticles ; Particle Size ; Plasma ; Pollution ; Protocol ; Silver - chemistry ; Spectrometric and optical methods ; Toxicity ; Transport</subject><ispartof>Analytical chemistry (Washington), 2011-12, Vol.83 (24), p.9361-9369</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Dec 15, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a561t-a9523629c4a88dcbff1a375e96b6902d62a4b6d4ea20f0861684b25029ab26123</citedby><cites>FETCH-LOGICAL-a561t-a9523629c4a88dcbff1a375e96b6902d62a4b6d4ea20f0861684b25029ab26123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25299768$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22074486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pace, Heather E</creatorcontrib><creatorcontrib>Rogers, Nicola J</creatorcontrib><creatorcontrib>Jarolimek, Chad</creatorcontrib><creatorcontrib>Coleman, Victoria A</creatorcontrib><creatorcontrib>Higgins, Christopher P</creatorcontrib><creatorcontrib>Ranville, James F</creatorcontrib><title>Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Currently there are few ideal methods for the characterization of nanoparticles in complex, environmental samples, leading to significant gaps in toxicity and exposure assessments of nanomaterials. Single particle-inductively coupled plasma-mass spectrometry (spICPMS) is an emerging technique that can both size and count metal-containing nanoparticles. A major benefit of the spICPMS method is its ability to characterize nanoparticles at concentrations relevant to the environment. This paper presents a practical guide on how to count and size nanoparticles using spICPMS. Different methods are investigated for measuring transport efficiency (i.e., nebulization efficiency), an important term in the spICPMS calculations. In addition, an alternative protocol is provided for determining particle size that broadens the applicability of the technique to all types of inorganic nanoparticles. Initial comparison, using well-characterized, monodisperse silver nanoparticles, showed the importance of having an accurate transport efficiency value when determining particle number concentration and, if using the newly presented protocol, particle size. Ultimately, the goal of this paper is to provide improvements to nanometrology by further developing this technique for the characterization of metal-containing nanoparticles.</description><subject>Analytical chemistry</subject><subject>Applied sciences</subject><subject>Assessments</subject><subject>Chemistry</subject><subject>Computational efficiency</subject><subject>Computing time</subject><subject>Counting</subject><subject>Exact sciences and technology</subject><subject>Global environmental pollution</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - instrumentation</subject><subject>Mass Spectrometry - methods</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metals - chemistry</subject><subject>Models, Theoretical</subject><subject>Nanoparticles</subject><subject>Particle Size</subject><subject>Plasma</subject><subject>Pollution</subject><subject>Protocol</subject><subject>Silver - chemistry</subject><subject>Spectrometric and optical methods</subject><subject>Toxicity</subject><subject>Transport</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNplkcFu1DAQhiMEokvhwAsgSwgJDgvjSeIkFyS0FKhUoFLL2Zo49tZVYqe2s9LyIDwvWXXZFjiNNfPN73_0Z9lzDm85IH9HCoE3JaYH2YKXCEtR1_gwWwBAvsQK4Ch7EuM1AOfAxePsCBGqoqjFIvv1UScdBuusW7PLQC6OPiR2YoxVVju1ZcYHlq40O5_C6KNm3rCVn1zaLZDr2IX9uXt-I-dHCsmqXke2sTQP3Lqf9_ZNduq6SSW70f12pzD2umPnPcWB2FeKkV2MWqXgB53C9mn2yFAf9bN9Pc5-fDq5XH1Znn3_fLr6cLakUvC0pPnoXGCjCqrrTrXGcMqrUjeiFQ1gJ5CKVnSFJgQDteCiLlosARtqUXDMj7P3t7rj1A66U9qlQL0cgx0obKUnK_-eOHsl134j84JDVcIs8HovEPzNpGOSg41K9z057acouWgwrzg2fEZf_oNe-ym4-TzJyxLrOkfezNSbW0oFH2PQ5mCGg9ylLQ9pz-yL--4P5J94Z-DVHqCoqDdzvsrGO67EpqlEfceRivdc_ffhb_52wGE</recordid><startdate>20111215</startdate><enddate>20111215</enddate><creator>Pace, Heather E</creator><creator>Rogers, Nicola J</creator><creator>Jarolimek, Chad</creator><creator>Coleman, Victoria A</creator><creator>Higgins, Christopher P</creator><creator>Ranville, James F</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20111215</creationdate><title>Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry</title><author>Pace, Heather E ; Rogers, Nicola J ; Jarolimek, Chad ; Coleman, Victoria A ; Higgins, Christopher P ; Ranville, James F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a561t-a9523629c4a88dcbff1a375e96b6902d62a4b6d4ea20f0861684b25029ab26123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical chemistry</topic><topic>Applied sciences</topic><topic>Assessments</topic><topic>Chemistry</topic><topic>Computational efficiency</topic><topic>Computing time</topic><topic>Counting</topic><topic>Exact sciences and technology</topic><topic>Global environmental pollution</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - instrumentation</topic><topic>Mass Spectrometry - methods</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metals - chemistry</topic><topic>Models, Theoretical</topic><topic>Nanoparticles</topic><topic>Particle Size</topic><topic>Plasma</topic><topic>Pollution</topic><topic>Protocol</topic><topic>Silver - chemistry</topic><topic>Spectrometric and optical methods</topic><topic>Toxicity</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pace, Heather E</creatorcontrib><creatorcontrib>Rogers, Nicola J</creatorcontrib><creatorcontrib>Jarolimek, Chad</creatorcontrib><creatorcontrib>Coleman, Victoria A</creatorcontrib><creatorcontrib>Higgins, Christopher P</creatorcontrib><creatorcontrib>Ranville, James F</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pace, Heather E</au><au>Rogers, Nicola J</au><au>Jarolimek, Chad</au><au>Coleman, Victoria A</au><au>Higgins, Christopher P</au><au>Ranville, James F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2011-12-15</date><risdate>2011</risdate><volume>83</volume><issue>24</issue><spage>9361</spage><epage>9369</epage><pages>9361-9369</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Currently there are few ideal methods for the characterization of nanoparticles in complex, environmental samples, leading to significant gaps in toxicity and exposure assessments of nanomaterials. Single particle-inductively coupled plasma-mass spectrometry (spICPMS) is an emerging technique that can both size and count metal-containing nanoparticles. A major benefit of the spICPMS method is its ability to characterize nanoparticles at concentrations relevant to the environment. This paper presents a practical guide on how to count and size nanoparticles using spICPMS. Different methods are investigated for measuring transport efficiency (i.e., nebulization efficiency), an important term in the spICPMS calculations. In addition, an alternative protocol is provided for determining particle size that broadens the applicability of the technique to all types of inorganic nanoparticles. Initial comparison, using well-characterized, monodisperse silver nanoparticles, showed the importance of having an accurate transport efficiency value when determining particle number concentration and, if using the newly presented protocol, particle size. Ultimately, the goal of this paper is to provide improvements to nanometrology by further developing this technique for the characterization of metal-containing nanoparticles.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22074486</pmid><doi>10.1021/ac201952t</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2011-12, Vol.83 (24), p.9361-9369 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3410750 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Analytical chemistry Applied sciences Assessments Chemistry Computational efficiency Computing time Counting Exact sciences and technology Global environmental pollution Mass spectrometry Mass Spectrometry - instrumentation Mass Spectrometry - methods Metal Nanoparticles - chemistry Metals - chemistry Models, Theoretical Nanoparticles Particle Size Plasma Pollution Protocol Silver - chemistry Spectrometric and optical methods Toxicity Transport |
title | Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20Transport%20Efficiency%20for%20the%20Purpose%20of%20Counting%20and%20Sizing%20Nanoparticles%20via%20Single%20Particle%20Inductively%20Coupled%20Plasma%20Mass%20Spectrometry&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Pace,%20Heather%20E&rft.date=2011-12-15&rft.volume=83&rft.issue=24&rft.spage=9361&rft.epage=9369&rft.pages=9361-9369&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac201952t&rft_dat=%3Cproquest_pubme%3E1692371291%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a561t-a9523629c4a88dcbff1a375e96b6902d62a4b6d4ea20f0861684b25029ab26123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1552883219&rft_id=info:pmid/22074486&rfr_iscdi=true |