Loading…

Imaging of Perfusion, Angiogenesis, and Tissue Elasticity after Stroke

Blood flow interruption in a cerebral artery causes brain ischemia and induces dramatic changes of perfusion and metabolism in the corresponding territory. We performed in parallel positron emission tomography (PET) with [15O]H2O, single photon emission computed tomography (SPECT) with [99mTc]hexame...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cerebral blood flow and metabolism 2012-08, Vol.32 (8), p.1496-1507
Main Authors: Martín, Abraham, Macé, Emilie, Boisgard, Raphael, Montaldo, Gabriel, Thézé, Benoit, Tanter, Mickael, Tavitian, Bertrand
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Blood flow interruption in a cerebral artery causes brain ischemia and induces dramatic changes of perfusion and metabolism in the corresponding territory. We performed in parallel positron emission tomography (PET) with [15O]H2O, single photon emission computed tomography (SPECT) with [99mTc]hexamethylpropylene-amino-oxime ([99mTc]HMPAO) and ultrasonic ultrafast shear wave imaging (SWI) during, immediately after, and 1, 2, 4, and 7 days after middle cerebral artery occlusion (MCAO) in rats. Positron emission tomography and SPECT showed initial hypoperfusion followed by recovery at immediate reperfusion, hypoperfusion at day 1, and hyperperfusion at days 4 to 7. Hyperperfusion interested the whole brain, including nonischemic areas. Immunohistochemical analysis indicated active angiogenesis at days 2 to 7, strongly suggestive that hyperperfusion was supported by an increase in microvessel density in both brain hemispheres after ischemia. The SWI detected elastic changes of cerebral tissue in the ischemic area as early as day 1 after MCAO appearing as a softening of cerebral tissue whose local internal elasticity decreased continuously from day 1 to 7. Taken together, these results suggest that hyperperfusion after cerebral ischemia is due to formation of neovessels, and indicate that brain softening is an early and continuous process. The SWI is a promising novel imaging method for monitoring the evolution of cerebral ischemia over time in animals.
ISSN:0271-678X
1559-7016
DOI:10.1038/jcbfm.2012.49