Loading…
Oxidative stress‐responsive microRNA‐320 regulates glycolysis in diverse biological systems
Glycolysis is the initial step of glucose catabolism and is up‐regulated in cancer cells (the Warburg Effect). Such shifts toward a glycolytic phenotype have not been explored widely in other biological systems, and the molecular mechanisms underlying the shifts remain unknown. With proteomics, we o...
Saved in:
Published in: | The FASEB journal 2012-11, Vol.26 (11), p.4710-4721 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Glycolysis is the initial step of glucose catabolism and is up‐regulated in cancer cells (the Warburg Effect). Such shifts toward a glycolytic phenotype have not been explored widely in other biological systems, and the molecular mechanisms underlying the shifts remain unknown. With proteomics, we observed increased glycolysis in disused human diaphragm muscle. In disused muscle, lung cancer, and H2O2‐treated myotubes, we show up‐regulation of the rate‐limiting glycolytic enzyme muscle‐type phosphofructokinase (PFKm, >2 fold, P150%, P< 0.05). Using microRNA profiling, we identify miR‐320a as a regulator of PFKm expression. Reduced miR‐320a levels (to ~50% of control, P |
---|---|
ISSN: | 0892-6638 1530-6860 |
DOI: | 10.1096/fj.11-197467 |