Loading…
Tunable Tensile Ductility in Metallic Glasses
Widespread adoption of metallic glasses (MGs) in applications motivated by high strength and elasticity combined with plastic-like processing has been stymied by their lack of tensile ductility. One emerging strategy to couple the attractive properties of MGs with resistance to failure by shear loca...
Saved in:
Published in: | Scientific reports 2013-01, Vol.3 (1), p.1096, Article 1096 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Widespread adoption of metallic glasses (MGs) in applications motivated by high strength and elasticity combined with plastic-like processing has been stymied by their lack of tensile ductility. One emerging strategy to couple the attractive properties of MGs with resistance to failure by shear localization is to employ sub-micron sample or feature length scales, although conflicting results shroud an atomistic understanding of the responsible mechanisms in uncertainty. Here, we report
in situ
deformation experiments of directly moulded Pt
57.5
Cu
14.7
Ni
5.3
P
22.5
MG nanowires, which show tunable tensile ductility. Initially brittle as-moulded nanowires can be coerced to a distinct glassy state upon irradiation with Ga
+
ions, leading to tensile ductility and quasi-homogeneous plastic flow. This behaviour is reversible and the glass returns to a brittle state upon subsequent annealing. Our results suggest a novel mechanism for homogenous plastic flow in nano-scaled MGs and strategies for circumventing the poor damage tolerance that has long plagued MGs. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep01096 |