Loading…

Muscle Plasticity and Ankle Control After Repetitive Use of a Functional Electrical Stimulation Device for Foot Drop in Cerebral Palsy

Background/Objectives. The primary goal was to determine whether repetitive functional electrical stimulation (FES) for unilateral foot drop increases tibialis anterior (TA) muscle size compared with an untreated baseline and the contralateral side in cerebral palsy (CP). Secondary goals were to det...

Full description

Saved in:
Bibliographic Details
Published in:Neurorehabilitation and neural repair 2013-03, Vol.27 (3), p.200-207
Main Authors: Damiano, Diane L., Prosser, Laura A., Curatalo, Lindsey A., Alter, Katharine E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background/Objectives. The primary goal was to determine whether repetitive functional electrical stimulation (FES) for unilateral foot drop increases tibialis anterior (TA) muscle size compared with an untreated baseline and the contralateral side in cerebral palsy (CP). Secondary goals were to determine whether positive changes in muscle size and gait, if found, accumulated during the 3 intervals during which participants used the device. FES devices differ from traditional orthoses that often restrict muscle activation and may exacerbate weakness, promote continued dependence on orthoses, or precipitate functional decline. Methods. Participants were 14 independent ambulators with inadequate dorsiflexion in swing, with a mean age of 13.1 years, evaluated before and after the 3-month baseline, 1-month device accommodation, 3-month primary intervention, and 3-month follow-up phases. The FES device (WalkAide) stimulated the common fibular nerve to dorsiflex the ankle and evert the foot while monitoring use. TA muscle ultrasound, gait velocity, and ankle kinematic data for barefoot and device conditions are reported. Results. Ultrasound measures of TA anatomic cross-sectional area and muscle thickness increased in the intervention compared with baseline and with the contralateral side and were maintained at follow-up. Maximum ankle dorsiflexion decreased at baseline but improved or was maintained during the intervention phase with and without the device, respectively. Muscle size gains were preserved at follow-up, but barefoot ankle motion returned to baseline values. Conclusions. This FES device produced evidence of use-dependent muscle plasticity in CP. Permanent improvements in voluntary ankle control after repetitive stimulation were not demonstrated.
ISSN:1545-9683
1552-6844
DOI:10.1177/1545968312461716