Loading…

Comparison Between 5-Aminosalicylic Acid (5-ASA) and Para-Aminosalicylic Acid (4-PAS) as Potential Protectors Against Mn-Induced Neurotoxicity

Manganese (Mn) is an essential metal for biological systems; however, occupational or clinical exposure to high levels of Mn can produce a neurological disorder called manganism. Oxidative stress and neuroinflammation play major roles in the Mn-induced neurodegeneration leading to dysfunction of the...

Full description

Saved in:
Bibliographic Details
Published in:Biological trace element research 2013-04, Vol.152 (1), p.113-116
Main Authors: Santos, Dinamene, Batoreu, M. Camila, Aschner, Michael, Marreilha dos Santos, Ana P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Manganese (Mn) is an essential metal for biological systems; however, occupational or clinical exposure to high levels of Mn can produce a neurological disorder called manganism. Oxidative stress and neuroinflammation play major roles in the Mn-induced neurodegeneration leading to dysfunction of the basal ganglia. We investigated the toxic effects of MnCl₂ in an immortalized rat brain endothelial cell line (RBE4) and the protective effects of the radical scavenging aminosalicylic acids, 5-aminosalicylic acid (5-ASA) and 4-aminosalicylic acid (4-PAS). Mn cytotoxicity was determined with 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) activity. A significant decrease in MTT reduction concomitant with increased LDH release was noted in RBE4 cells exposed for 24 h to MnCl₂ (600 and 800 μM; p 
ISSN:0163-4984
1559-0720
DOI:10.1007/s12011-012-9597-0