Loading…
Canonical forms of unconditionally convergent multipliers
Multipliers are operators that combine (frame-like) analysis, a multiplication with a fixed sequence, called the symbol, and synthesis. They are very interesting mathematical objects that also have a lot of applications for example in acoustical signal processing. It is known that bounded symbols an...
Saved in:
Published in: | Journal of mathematical analysis and applications 2013-03, Vol.399 (1), p.252-259 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multipliers are operators that combine (frame-like) analysis, a multiplication with a fixed sequence, called the symbol, and synthesis. They are very interesting mathematical objects that also have a lot of applications for example in acoustical signal processing. It is known that bounded symbols and Bessel sequences guarantee unconditional convergence. In this paper we investigate necessary and equivalent conditions for the unconditional convergence of multipliers. In particular, we show that, under mild conditions, unconditionally convergent multipliers can be transformed by shifting weights between symbol and sequence, into multipliers with symbol (1) and Bessel sequences (called multipliers in canonical form). |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2012.10.007 |