Loading…
Molecular adaptation during a rapid adaptive radiation
"Explosive" adaptive radiations on islands remain one of the most puzzling evolutionary phenomena and the evolutionary genetic processes behind such radiations remain unclear. Rapid morphological and ecological evolution during island radiations suggests that many genes may be under fairly...
Saved in:
Published in: | Molecular biology and evolution 2013-05, Vol.30 (5), p.1051-1059 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | "Explosive" adaptive radiations on islands remain one of the most puzzling evolutionary phenomena and the evolutionary genetic processes behind such radiations remain unclear. Rapid morphological and ecological evolution during island radiations suggests that many genes may be under fairly strong selection, although this remains untested. Here, we report that during a rapid recent diversification in the Hawaiian endemic plant genus Schiedea (Caryophyllaceae), 5 in 36 studied genes evolved under positive selection. Positively selected genes are involved in defence mechanisms, photosynthesis, and reproduction. Comparison with eight mainland plant groups demonstrates both the relaxation of purifying selection and more widespread positive selection in Hawaiian Schiedea. This provides compelling evidence that adaptive evolution of protein-coding genes may play a significant role during island adaptive radiations. |
---|---|
ISSN: | 0737-4038 1537-1719 |
DOI: | 10.1093/molbev/mst013 |