Loading…

Synthesis, Electrochemistry, and Photophysics of a Family of Phlorin Macrocycles That Display Cooperative Fluoride Binding

A homologous set of 5,5-dimethylphlorin macrocycles in which the identity of one aryl ring is systematically varied has been prepared. These derivatives contain ancillary pentafluorophenyl (3H(PhlF)), mesityl (3H(PhlMes)), 2,6-bismethoxyphenyl (3H(PhlOMe)), 4-nitrophenyl (3H(PhlNO2 )), or 4-tert-but...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2013-05, Vol.135 (17), p.6601-6607
Main Authors: Pistner, Allen J, Lutterman, Daniel A, Ghidiu, Michael J, Ma, Ying-Zhong, Rosenthal, Joel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A homologous set of 5,5-dimethylphlorin macrocycles in which the identity of one aryl ring is systematically varied has been prepared. These derivatives contain ancillary pentafluorophenyl (3H(PhlF)), mesityl (3H(PhlMes)), 2,6-bismethoxyphenyl (3H(PhlOMe)), 4-nitrophenyl (3H(PhlNO2 )), or 4-tert-butylcarboxyphenyl (3H(PhlCO2tBu)) groups at the 15-meso-position. These porphyrinoids were prepared in good yields (35–50%) and display unusual multielectron redox and photochemical properties. Each phlorin can be oxidized up to three times at modest potentials and can be reduced twice. The electron-donating and electron-releasing properties of the ancillary aryl substituent attenuate the potentials of these redox events; phlorins containing electron-donating aryl groups are easier to oxidize and harder to reduce, while the opposite trend is observed for phlorins containing electron-withdrawing functionalities. Phlorin substitution also has a pronounced effect on the observed photophysics, as introduction of electron-releasing aryl groups on the periphery of the macrocycle is manifest in larger emission quantum yields and longer fluorescence lifetimes. Each phlorin displays an intriguing supramolecular chemistry and can bind 2 equiv of fluoride. This binding is allosteric in nature, and the strength of halide binding correlates with the ability of the phlorin to stabilize the buildup of charge. Moreover, fluoride binding to generate complexes of the form 3H(PhlR)·2F– modulates the redox potentials of the parent phlorin. As such, titration of phlorin with a source of fluoride represents a facile method to tune the ability of this class of porphyrinoid to absorb light and engage in redox chemistry.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja401391z