Loading…
Development of Channeled Nanofibrous Scaffolds for Oriented Tissue Engineering
A tissue‐engineering scaffold resembling the structure of the natural extracellular matrix can often facilitate tissue regeneration. Nerve and tendon are oriented micro‐scale tissue bundles. In this study, a method combining injection molding and thermally induced phase separation techniques is deve...
Saved in:
Published in: | Macromolecular bioscience 2012-06, Vol.12 (6), p.761-769 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A tissue‐engineering scaffold resembling the structure of the natural extracellular matrix can often facilitate tissue regeneration. Nerve and tendon are oriented micro‐scale tissue bundles. In this study, a method combining injection molding and thermally induced phase separation techniques is developed to create single‐ and multiple‐channeled nanofibrous poly(L‐lactic acid) scaffolds. The overall shape, the number and spatial arrangement of channels, the channel wall matrix architecture, the porosity and mechanical properties of the scaffolds are all tunable. The porous NF channel wall matrix provides an excellent microenvironment for protein adsorption and the attachment of PC12 neuronal cells and tendon fibroblast cells, showing potential for neural and tendon tissue regeneration.
A method combining injection molding and thermally induced phase separation is developed to create single‐ and multiple‐channeled nanofibrous polymer scaffolds. The porous nanofibrous channel wall provides an excellent microenvironment for protein adsorption and cell attachment, showing potential for nerve and tendon regeneration. |
---|---|
ISSN: | 1616-5187 1616-5195 |
DOI: | 10.1002/mabi.201200004 |