Loading…

Single-File Diffusion of Flagellin in Flagellar Filaments

A bacterial flagellar filament is a cylindrical crystal of a protein known as flagellin. Flagellin subunits travel from the cytoplasm through a 2 nm axial pore and polymerize at the filament’s distal end. They are supplied by a pump in the cell membrane powered by a proton-motive force. In a recent...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2013-07, Vol.105 (1), p.182-184
Main Authors: Stern, Alan S., Berg, Howard C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A bacterial flagellar filament is a cylindrical crystal of a protein known as flagellin. Flagellin subunits travel from the cytoplasm through a 2 nm axial pore and polymerize at the filament’s distal end. They are supplied by a pump in the cell membrane powered by a proton-motive force. In a recent experiment, it was observed that growth proceeded at a rate of approximately one subunit every 2 s. Here, we asked whether transport of subunits through the pore at this rate could be effected by single-file diffusion, which we simulated by a random walk on a one-dimensional lattice. Assuming that the subunits are α-helical, the answer is yes, by a comfortable margin.
ISSN:0006-3495
1542-0086
DOI:10.1016/j.bpj.2013.05.030