Loading…

Arthrometric evaluation of stabilizing effect of knee functional bracing at different flexion angles

Previous in-vivo investigations on the stabilizing efficacy of knee bracing for ACL reconstructed patients have been often limited to 20-30 degrees of knee flexion. In this study, the effectiveness of a uniaxial hinged functional brace to improve the knee stability was assessed at 30, 60 and 90 degr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sports science & medicine 2009-06, Vol.8 (2), p.247-251
Main Authors: Seyed Mohseni, Saeedeh, Moss, Farzam, Karimi, Hossein, Kamali, Mohammad
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Previous in-vivo investigations on the stabilizing efficacy of knee bracing for ACL reconstructed patients have been often limited to 20-30 degrees of knee flexion. In this study, the effectiveness of a uniaxial hinged functional brace to improve the knee stability was assessed at 30, 60 and 90 degrees of knee flexion. Arthrometry tests were conducted on 15 healthy subjects before and following wearing the brace and the tibial displacements were measured at up to 150 N anterior forces. Results indicated that functional bracing has a significant stabilizing effect throughout the range of knee flexion examined (p < 0.05). The rate of effectiveness, however, was not consistent across the flexion range, e.g., 50% at 30 degrees and only 4% at 90 degrees. It was suggested that accurate sizing and fitting as well as attention to correct hinge placement relative to the femoral condyles can limit brace migration and improve its effectiveness in mid and deep knee flexion. With using adaptive limb fittings, through flexible pads, and a polycentric joint a more significant improvement of the overall brace performance and efficacy might be obtained. Key pointsFunctional bracing improves the knee joint stability mostly in extension posture.Unlike the non-braced condition, the least knee joint stability appears in mid and deep flexion angles when using a hinged brace.Accurate sizing and fitting and attention to correct hinge placement relative to the femoral condyles can limit brace migration and improve its effectiveness in mid and deep knee flexion.The overall brace performance and efficacy might be improved significantly using adaptive limb fittings through flexible pads and/or polycentric joints.
ISSN:1303-2968
1303-2968