Loading…
Design of β-Amyloid Aggregation Inhibitors from a Predicted Structural Motif
Drug design studies targeting one of the primary toxic agents in Alzheimer’s disease, soluble oligomers of amyloid β-protein (Aβ), have been complicated by the rapid, heterogeneous aggregation of Aβ and the resulting difficulty to structurally characterize the peptide. To address this, we have devel...
Saved in:
Published in: | Journal of medicinal chemistry 2012-04, Vol.55 (7), p.3002-3010 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Drug design studies targeting one of the primary toxic agents in Alzheimer’s disease, soluble oligomers of amyloid β-protein (Aβ), have been complicated by the rapid, heterogeneous aggregation of Aβ and the resulting difficulty to structurally characterize the peptide. To address this, we have developed [Nle35, d-Pro37]Aβ42, a substituted peptide inspired from molecular dynamics simulations which forms structures stable enough to be analyzed by NMR. We report herein that [Nle35, d-Pro37]Aβ42 stabilizes the trimer and prevents mature fibril and β-sheet formation. Further, [Nle35, d-Pro37]Aβ42 interacts with WT Aβ42 and reduces aggregation levels and fibril formation in mixtures. Using ligand-based drug design based on [Nle35, d-Pro37]Aβ42, a lead compound was identified with effects on inhibition similar to the peptide. The ability of [Nle35, d-Pro37]Aβ42 and the compound to inhibit the aggregation of Aβ42 provides a novel tool to study the structure of Aβ oligomers. More broadly, our data demonstrate how molecular dynamics simulation can guide experiment for further research into AD. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/jm201332p |