Loading…
Laminar transformation of frequency organization in auditory cortex
The mammalian neocortex is a six-layered structure organized into radial columns. Within sensory cortical areas, information enters in the thalamorecipient layer and is further processed in supragranular and infragranular layers. Within the neocortex, topographic maps of stimulus features are presen...
Saved in:
Published in: | The Journal of neuroscience 2013-01, Vol.33 (4), p.1498-1508 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mammalian neocortex is a six-layered structure organized into radial columns. Within sensory cortical areas, information enters in the thalamorecipient layer and is further processed in supragranular and infragranular layers. Within the neocortex, topographic maps of stimulus features are present, but whether topographic patterns of active neurons change between laminae is unknown. Here, we used in vivo two-photon Ca(2+) imaging to probe the organization of the mouse primary auditory cortex and show that the spatial organization of neural response properties (frequency tuning) within the thalamorecipient layer (L3b/4) is more homogeneous than in supragranular layers (L2/3). Moreover, stimulus-related correlations between pairs of neurons are higher in the thalamorecipient layer, whereas stimulus-independent trial-to-trial covariance is higher in supragranular neurons. These findings reveal a transformation of sensory representations that occurs between layers within the auditory cortex, which could generate sequentially more complex analysis of the acoustic scene incorporating a broad range of spectrotemporal sound features. |
---|---|
ISSN: | 0270-6474 1529-2401 1529-2401 |
DOI: | 10.1523/jneurosci.3101-12.2013 |