Loading…
Achieving synaptically relevant pulses of neurotransmitter using PDMS microfluidics
Fast synaptic transmission is mediated by post-synaptic ligand-gated ion channels (LGICs) transiently activated by neurotransmitter released from pre-synaptic vesicles. Although disruption of synaptic transmission has been implicated in numerous neurological and psychiatric disorders, effective and...
Saved in:
Published in: | Journal of neuroscience methods 2009-03, Vol.177 (2), p.294-302 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-1dc75093e1cb2e30a396b95a3e6fac0b6659c542c780e9cde380e0e607b721d93 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-1dc75093e1cb2e30a396b95a3e6fac0b6659c542c780e9cde380e0e607b721d93 |
container_end_page | 302 |
container_issue | 2 |
container_start_page | 294 |
container_title | Journal of neuroscience methods |
container_volume | 177 |
creator | Botzolakis, E.J. Maheshwari, A. Feng, H.J. Lagrange, A.H. Shaver, J.H. Kassebaum, N.J. Venkataraman, R. Baudenbacher, F. Macdonald, R.L. |
description | Fast synaptic transmission is mediated by post-synaptic ligand-gated ion channels (LGICs) transiently activated by neurotransmitter released from pre-synaptic vesicles. Although disruption of synaptic transmission has been implicated in numerous neurological and psychiatric disorders, effective and practical methods for studying LGICs in vitro under synaptically relevant conditions are unavailable. Here, we describe a novel microfluidic approach to solution switching that allows for precise temporal control over the neurotransmitter transient while substantially increasing experimental throughput, flexibility, reproducibility, and cost-effectiveness. When this system was used to apply ultra-brief (∼400μs) GABA pulses to recombinant GABAA receptors, members of the cys-loop family of LGICs, the resulting currents resembled hippocampal inhibitory post-synaptic currents (IPSCs) and differed from currents evoked by longer, conventional pulses, illustrating the importance of evaluating LGICs on a synaptic timescale. This methodology should therefore allow the effects of disease-causing mutations and allosteric modulators to be evaluated in vitro under physiologically relevant conditions. |
doi_str_mv | 10.1016/j.jneumeth.2008.10.014 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3786708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165027008006328</els_id><sourcerecordid>66837536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-1dc75093e1cb2e30a396b95a3e6fac0b6659c542c780e9cde380e0e607b721d93</originalsourceid><addsrcrecordid>eNqFUU1P4zAQtRAICuxfQDntLWUcN3Z8QYtgF5BAIMFKe7McZ0JdJU6xnUr99-uqXVhOnEaaeR8z8wg5ozClQPn5YrpwOPYY59MCoErNKdDZHpnQShQ5F9WffTJJwDKHQsAROQ5hAQAzCfyQHFEJlFFZTsjzpZlbXFn3moW108toje66deaxw5V2MVuOXcCQDW2W_PwQvXahtzGiz8awoT1dPzxnvTV-aLvRNtaEU3LQ6sT6tqsn5Pevny9Xt_n9483d1eV9bmZcxpw2RpQgGVJTF8hAM8lrWWqGvNUGas5LacpZYUQFKE2DLFVADqIWBW0kOyEXW93lWPfYGHRpu04tve21X6tBW_V54uxcvQ4rxUTFBVRJ4PtOwA9vI4aoehsMdp12OIxBcV4xUTKegHwLTFeG4LF9N6GgNnmohfqXh9rksemnPBLx7P8VP2i7ABLgxxaA6VEri14FY9EZbKxHE1Uz2K88_gIxwaMb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66837536</pqid></control><display><type>article</type><title>Achieving synaptically relevant pulses of neurotransmitter using PDMS microfluidics</title><source>ScienceDirect Journals</source><creator>Botzolakis, E.J. ; Maheshwari, A. ; Feng, H.J. ; Lagrange, A.H. ; Shaver, J.H. ; Kassebaum, N.J. ; Venkataraman, R. ; Baudenbacher, F. ; Macdonald, R.L.</creator><creatorcontrib>Botzolakis, E.J. ; Maheshwari, A. ; Feng, H.J. ; Lagrange, A.H. ; Shaver, J.H. ; Kassebaum, N.J. ; Venkataraman, R. ; Baudenbacher, F. ; Macdonald, R.L.</creatorcontrib><description>Fast synaptic transmission is mediated by post-synaptic ligand-gated ion channels (LGICs) transiently activated by neurotransmitter released from pre-synaptic vesicles. Although disruption of synaptic transmission has been implicated in numerous neurological and psychiatric disorders, effective and practical methods for studying LGICs in vitro under synaptically relevant conditions are unavailable. Here, we describe a novel microfluidic approach to solution switching that allows for precise temporal control over the neurotransmitter transient while substantially increasing experimental throughput, flexibility, reproducibility, and cost-effectiveness. When this system was used to apply ultra-brief (∼400μs) GABA pulses to recombinant GABAA receptors, members of the cys-loop family of LGICs, the resulting currents resembled hippocampal inhibitory post-synaptic currents (IPSCs) and differed from currents evoked by longer, conventional pulses, illustrating the importance of evaluating LGICs on a synaptic timescale. This methodology should therefore allow the effects of disease-causing mutations and allosteric modulators to be evaluated in vitro under physiologically relevant conditions.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/j.jneumeth.2008.10.014</identifier><identifier>PMID: 19013195</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Allosteric Regulation - drug effects ; Allosteric Regulation - physiology ; Cell Line ; Cys-loop ; Drug Delivery Systems - instrumentation ; Drug Delivery Systems - methods ; Electronics, Medical - instrumentation ; Electronics, Medical - methods ; Electrophysiology ; Electrophysiology - instrumentation ; Electrophysiology - methods ; GABAA receptor ; Humans ; Inhibitory Postsynaptic Potentials - drug effects ; Inhibitory Postsynaptic Potentials - physiology ; Ion channel ; Kinetics ; Ligand-gated ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Neural Inhibition - drug effects ; Neural Inhibition - physiology ; Neurochemistry - instrumentation ; Neurochemistry - methods ; Neurotransmitter Agents - metabolism ; Neurotransmitter Agents - pharmacology ; Neurotransmitter Agents - secretion ; Patch clamp ; Patch-Clamp Techniques - instrumentation ; Patch-Clamp Techniques - methods ; Pharmacology ; Photolithography ; Presynaptic Terminals - drug effects ; Presynaptic Terminals - metabolism ; Presynaptic Terminals - secretion ; Receptors, GABA-A - drug effects ; Receptors, GABA-A - metabolism ; Recombinant Proteins - drug effects ; Recombinant Proteins - metabolism ; Solution exchange ; Solution switching ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology ; Time Factors</subject><ispartof>Journal of neuroscience methods, 2009-03, Vol.177 (2), p.294-302</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 Elsevier B.V. All rights reserved. 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-1dc75093e1cb2e30a396b95a3e6fac0b6659c542c780e9cde380e0e607b721d93</citedby><cites>FETCH-LOGICAL-c469t-1dc75093e1cb2e30a396b95a3e6fac0b6659c542c780e9cde380e0e607b721d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19013195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Botzolakis, E.J.</creatorcontrib><creatorcontrib>Maheshwari, A.</creatorcontrib><creatorcontrib>Feng, H.J.</creatorcontrib><creatorcontrib>Lagrange, A.H.</creatorcontrib><creatorcontrib>Shaver, J.H.</creatorcontrib><creatorcontrib>Kassebaum, N.J.</creatorcontrib><creatorcontrib>Venkataraman, R.</creatorcontrib><creatorcontrib>Baudenbacher, F.</creatorcontrib><creatorcontrib>Macdonald, R.L.</creatorcontrib><title>Achieving synaptically relevant pulses of neurotransmitter using PDMS microfluidics</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>Fast synaptic transmission is mediated by post-synaptic ligand-gated ion channels (LGICs) transiently activated by neurotransmitter released from pre-synaptic vesicles. Although disruption of synaptic transmission has been implicated in numerous neurological and psychiatric disorders, effective and practical methods for studying LGICs in vitro under synaptically relevant conditions are unavailable. Here, we describe a novel microfluidic approach to solution switching that allows for precise temporal control over the neurotransmitter transient while substantially increasing experimental throughput, flexibility, reproducibility, and cost-effectiveness. When this system was used to apply ultra-brief (∼400μs) GABA pulses to recombinant GABAA receptors, members of the cys-loop family of LGICs, the resulting currents resembled hippocampal inhibitory post-synaptic currents (IPSCs) and differed from currents evoked by longer, conventional pulses, illustrating the importance of evaluating LGICs on a synaptic timescale. This methodology should therefore allow the effects of disease-causing mutations and allosteric modulators to be evaluated in vitro under physiologically relevant conditions.</description><subject>Allosteric Regulation - drug effects</subject><subject>Allosteric Regulation - physiology</subject><subject>Cell Line</subject><subject>Cys-loop</subject><subject>Drug Delivery Systems - instrumentation</subject><subject>Drug Delivery Systems - methods</subject><subject>Electronics, Medical - instrumentation</subject><subject>Electronics, Medical - methods</subject><subject>Electrophysiology</subject><subject>Electrophysiology - instrumentation</subject><subject>Electrophysiology - methods</subject><subject>GABAA receptor</subject><subject>Humans</subject><subject>Inhibitory Postsynaptic Potentials - drug effects</subject><subject>Inhibitory Postsynaptic Potentials - physiology</subject><subject>Ion channel</subject><subject>Kinetics</subject><subject>Ligand-gated</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Neural Inhibition - drug effects</subject><subject>Neural Inhibition - physiology</subject><subject>Neurochemistry - instrumentation</subject><subject>Neurochemistry - methods</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Neurotransmitter Agents - pharmacology</subject><subject>Neurotransmitter Agents - secretion</subject><subject>Patch clamp</subject><subject>Patch-Clamp Techniques - instrumentation</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Pharmacology</subject><subject>Photolithography</subject><subject>Presynaptic Terminals - drug effects</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Presynaptic Terminals - secretion</subject><subject>Receptors, GABA-A - drug effects</subject><subject>Receptors, GABA-A - metabolism</subject><subject>Recombinant Proteins - drug effects</subject><subject>Recombinant Proteins - metabolism</subject><subject>Solution exchange</subject><subject>Solution switching</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><subject>Time Factors</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFUU1P4zAQtRAICuxfQDntLWUcN3Z8QYtgF5BAIMFKe7McZ0JdJU6xnUr99-uqXVhOnEaaeR8z8wg5ozClQPn5YrpwOPYY59MCoErNKdDZHpnQShQ5F9WffTJJwDKHQsAROQ5hAQAzCfyQHFEJlFFZTsjzpZlbXFn3moW108toje66deaxw5V2MVuOXcCQDW2W_PwQvXahtzGiz8awoT1dPzxnvTV-aLvRNtaEU3LQ6sT6tqsn5Pevny9Xt_n9483d1eV9bmZcxpw2RpQgGVJTF8hAM8lrWWqGvNUGas5LacpZYUQFKE2DLFVADqIWBW0kOyEXW93lWPfYGHRpu04tve21X6tBW_V54uxcvQ4rxUTFBVRJ4PtOwA9vI4aoehsMdp12OIxBcV4xUTKegHwLTFeG4LF9N6GgNnmohfqXh9rksemnPBLx7P8VP2i7ABLgxxaA6VEri14FY9EZbKxHE1Uz2K88_gIxwaMb</recordid><startdate>20090315</startdate><enddate>20090315</enddate><creator>Botzolakis, E.J.</creator><creator>Maheshwari, A.</creator><creator>Feng, H.J.</creator><creator>Lagrange, A.H.</creator><creator>Shaver, J.H.</creator><creator>Kassebaum, N.J.</creator><creator>Venkataraman, R.</creator><creator>Baudenbacher, F.</creator><creator>Macdonald, R.L.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090315</creationdate><title>Achieving synaptically relevant pulses of neurotransmitter using PDMS microfluidics</title><author>Botzolakis, E.J. ; Maheshwari, A. ; Feng, H.J. ; Lagrange, A.H. ; Shaver, J.H. ; Kassebaum, N.J. ; Venkataraman, R. ; Baudenbacher, F. ; Macdonald, R.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-1dc75093e1cb2e30a396b95a3e6fac0b6659c542c780e9cde380e0e607b721d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Allosteric Regulation - drug effects</topic><topic>Allosteric Regulation - physiology</topic><topic>Cell Line</topic><topic>Cys-loop</topic><topic>Drug Delivery Systems - instrumentation</topic><topic>Drug Delivery Systems - methods</topic><topic>Electronics, Medical - instrumentation</topic><topic>Electronics, Medical - methods</topic><topic>Electrophysiology</topic><topic>Electrophysiology - instrumentation</topic><topic>Electrophysiology - methods</topic><topic>GABAA receptor</topic><topic>Humans</topic><topic>Inhibitory Postsynaptic Potentials - drug effects</topic><topic>Inhibitory Postsynaptic Potentials - physiology</topic><topic>Ion channel</topic><topic>Kinetics</topic><topic>Ligand-gated</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Neural Inhibition - drug effects</topic><topic>Neural Inhibition - physiology</topic><topic>Neurochemistry - instrumentation</topic><topic>Neurochemistry - methods</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Neurotransmitter Agents - pharmacology</topic><topic>Neurotransmitter Agents - secretion</topic><topic>Patch clamp</topic><topic>Patch-Clamp Techniques - instrumentation</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Pharmacology</topic><topic>Photolithography</topic><topic>Presynaptic Terminals - drug effects</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Presynaptic Terminals - secretion</topic><topic>Receptors, GABA-A - drug effects</topic><topic>Receptors, GABA-A - metabolism</topic><topic>Recombinant Proteins - drug effects</topic><topic>Recombinant Proteins - metabolism</topic><topic>Solution exchange</topic><topic>Solution switching</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Botzolakis, E.J.</creatorcontrib><creatorcontrib>Maheshwari, A.</creatorcontrib><creatorcontrib>Feng, H.J.</creatorcontrib><creatorcontrib>Lagrange, A.H.</creatorcontrib><creatorcontrib>Shaver, J.H.</creatorcontrib><creatorcontrib>Kassebaum, N.J.</creatorcontrib><creatorcontrib>Venkataraman, R.</creatorcontrib><creatorcontrib>Baudenbacher, F.</creatorcontrib><creatorcontrib>Macdonald, R.L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Botzolakis, E.J.</au><au>Maheshwari, A.</au><au>Feng, H.J.</au><au>Lagrange, A.H.</au><au>Shaver, J.H.</au><au>Kassebaum, N.J.</au><au>Venkataraman, R.</au><au>Baudenbacher, F.</au><au>Macdonald, R.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving synaptically relevant pulses of neurotransmitter using PDMS microfluidics</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2009-03-15</date><risdate>2009</risdate><volume>177</volume><issue>2</issue><spage>294</spage><epage>302</epage><pages>294-302</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><abstract>Fast synaptic transmission is mediated by post-synaptic ligand-gated ion channels (LGICs) transiently activated by neurotransmitter released from pre-synaptic vesicles. Although disruption of synaptic transmission has been implicated in numerous neurological and psychiatric disorders, effective and practical methods for studying LGICs in vitro under synaptically relevant conditions are unavailable. Here, we describe a novel microfluidic approach to solution switching that allows for precise temporal control over the neurotransmitter transient while substantially increasing experimental throughput, flexibility, reproducibility, and cost-effectiveness. When this system was used to apply ultra-brief (∼400μs) GABA pulses to recombinant GABAA receptors, members of the cys-loop family of LGICs, the resulting currents resembled hippocampal inhibitory post-synaptic currents (IPSCs) and differed from currents evoked by longer, conventional pulses, illustrating the importance of evaluating LGICs on a synaptic timescale. This methodology should therefore allow the effects of disease-causing mutations and allosteric modulators to be evaluated in vitro under physiologically relevant conditions.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>19013195</pmid><doi>10.1016/j.jneumeth.2008.10.014</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-0270 |
ispartof | Journal of neuroscience methods, 2009-03, Vol.177 (2), p.294-302 |
issn | 0165-0270 1872-678X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3786708 |
source | ScienceDirect Journals |
subjects | Allosteric Regulation - drug effects Allosteric Regulation - physiology Cell Line Cys-loop Drug Delivery Systems - instrumentation Drug Delivery Systems - methods Electronics, Medical - instrumentation Electronics, Medical - methods Electrophysiology Electrophysiology - instrumentation Electrophysiology - methods GABAA receptor Humans Inhibitory Postsynaptic Potentials - drug effects Inhibitory Postsynaptic Potentials - physiology Ion channel Kinetics Ligand-gated Microfluidic Analytical Techniques - instrumentation Microfluidic Analytical Techniques - methods Neural Inhibition - drug effects Neural Inhibition - physiology Neurochemistry - instrumentation Neurochemistry - methods Neurotransmitter Agents - metabolism Neurotransmitter Agents - pharmacology Neurotransmitter Agents - secretion Patch clamp Patch-Clamp Techniques - instrumentation Patch-Clamp Techniques - methods Pharmacology Photolithography Presynaptic Terminals - drug effects Presynaptic Terminals - metabolism Presynaptic Terminals - secretion Receptors, GABA-A - drug effects Receptors, GABA-A - metabolism Recombinant Proteins - drug effects Recombinant Proteins - metabolism Solution exchange Solution switching Synaptic Transmission - drug effects Synaptic Transmission - physiology Time Factors |
title | Achieving synaptically relevant pulses of neurotransmitter using PDMS microfluidics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20synaptically%20relevant%20pulses%20of%20neurotransmitter%20using%20PDMS%20microfluidics&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Botzolakis,%20E.J.&rft.date=2009-03-15&rft.volume=177&rft.issue=2&rft.spage=294&rft.epage=302&rft.pages=294-302&rft.issn=0165-0270&rft.eissn=1872-678X&rft_id=info:doi/10.1016/j.jneumeth.2008.10.014&rft_dat=%3Cproquest_pubme%3E66837536%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-1dc75093e1cb2e30a396b95a3e6fac0b6659c542c780e9cde380e0e607b721d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=66837536&rft_id=info:pmid/19013195&rfr_iscdi=true |