Loading…

Achieving synaptically relevant pulses of neurotransmitter using PDMS microfluidics

Fast synaptic transmission is mediated by post-synaptic ligand-gated ion channels (LGICs) transiently activated by neurotransmitter released from pre-synaptic vesicles. Although disruption of synaptic transmission has been implicated in numerous neurological and psychiatric disorders, effective and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroscience methods 2009-03, Vol.177 (2), p.294-302
Main Authors: Botzolakis, E.J., Maheshwari, A., Feng, H.J., Lagrange, A.H., Shaver, J.H., Kassebaum, N.J., Venkataraman, R., Baudenbacher, F., Macdonald, R.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-1dc75093e1cb2e30a396b95a3e6fac0b6659c542c780e9cde380e0e607b721d93
cites cdi_FETCH-LOGICAL-c469t-1dc75093e1cb2e30a396b95a3e6fac0b6659c542c780e9cde380e0e607b721d93
container_end_page 302
container_issue 2
container_start_page 294
container_title Journal of neuroscience methods
container_volume 177
creator Botzolakis, E.J.
Maheshwari, A.
Feng, H.J.
Lagrange, A.H.
Shaver, J.H.
Kassebaum, N.J.
Venkataraman, R.
Baudenbacher, F.
Macdonald, R.L.
description Fast synaptic transmission is mediated by post-synaptic ligand-gated ion channels (LGICs) transiently activated by neurotransmitter released from pre-synaptic vesicles. Although disruption of synaptic transmission has been implicated in numerous neurological and psychiatric disorders, effective and practical methods for studying LGICs in vitro under synaptically relevant conditions are unavailable. Here, we describe a novel microfluidic approach to solution switching that allows for precise temporal control over the neurotransmitter transient while substantially increasing experimental throughput, flexibility, reproducibility, and cost-effectiveness. When this system was used to apply ultra-brief (∼400μs) GABA pulses to recombinant GABAA receptors, members of the cys-loop family of LGICs, the resulting currents resembled hippocampal inhibitory post-synaptic currents (IPSCs) and differed from currents evoked by longer, conventional pulses, illustrating the importance of evaluating LGICs on a synaptic timescale. This methodology should therefore allow the effects of disease-causing mutations and allosteric modulators to be evaluated in vitro under physiologically relevant conditions.
doi_str_mv 10.1016/j.jneumeth.2008.10.014
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3786708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165027008006328</els_id><sourcerecordid>66837536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-1dc75093e1cb2e30a396b95a3e6fac0b6659c542c780e9cde380e0e607b721d93</originalsourceid><addsrcrecordid>eNqFUU1P4zAQtRAICuxfQDntLWUcN3Z8QYtgF5BAIMFKe7McZ0JdJU6xnUr99-uqXVhOnEaaeR8z8wg5ozClQPn5YrpwOPYY59MCoErNKdDZHpnQShQ5F9WffTJJwDKHQsAROQ5hAQAzCfyQHFEJlFFZTsjzpZlbXFn3moW108toje66deaxw5V2MVuOXcCQDW2W_PwQvXahtzGiz8awoT1dPzxnvTV-aLvRNtaEU3LQ6sT6tqsn5Pevny9Xt_n9483d1eV9bmZcxpw2RpQgGVJTF8hAM8lrWWqGvNUGas5LacpZYUQFKE2DLFVADqIWBW0kOyEXW93lWPfYGHRpu04tve21X6tBW_V54uxcvQ4rxUTFBVRJ4PtOwA9vI4aoehsMdp12OIxBcV4xUTKegHwLTFeG4LF9N6GgNnmohfqXh9rksemnPBLx7P8VP2i7ABLgxxaA6VEri14FY9EZbKxHE1Uz2K88_gIxwaMb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66837536</pqid></control><display><type>article</type><title>Achieving synaptically relevant pulses of neurotransmitter using PDMS microfluidics</title><source>ScienceDirect Journals</source><creator>Botzolakis, E.J. ; Maheshwari, A. ; Feng, H.J. ; Lagrange, A.H. ; Shaver, J.H. ; Kassebaum, N.J. ; Venkataraman, R. ; Baudenbacher, F. ; Macdonald, R.L.</creator><creatorcontrib>Botzolakis, E.J. ; Maheshwari, A. ; Feng, H.J. ; Lagrange, A.H. ; Shaver, J.H. ; Kassebaum, N.J. ; Venkataraman, R. ; Baudenbacher, F. ; Macdonald, R.L.</creatorcontrib><description>Fast synaptic transmission is mediated by post-synaptic ligand-gated ion channels (LGICs) transiently activated by neurotransmitter released from pre-synaptic vesicles. Although disruption of synaptic transmission has been implicated in numerous neurological and psychiatric disorders, effective and practical methods for studying LGICs in vitro under synaptically relevant conditions are unavailable. Here, we describe a novel microfluidic approach to solution switching that allows for precise temporal control over the neurotransmitter transient while substantially increasing experimental throughput, flexibility, reproducibility, and cost-effectiveness. When this system was used to apply ultra-brief (∼400μs) GABA pulses to recombinant GABAA receptors, members of the cys-loop family of LGICs, the resulting currents resembled hippocampal inhibitory post-synaptic currents (IPSCs) and differed from currents evoked by longer, conventional pulses, illustrating the importance of evaluating LGICs on a synaptic timescale. This methodology should therefore allow the effects of disease-causing mutations and allosteric modulators to be evaluated in vitro under physiologically relevant conditions.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/j.jneumeth.2008.10.014</identifier><identifier>PMID: 19013195</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Allosteric Regulation - drug effects ; Allosteric Regulation - physiology ; Cell Line ; Cys-loop ; Drug Delivery Systems - instrumentation ; Drug Delivery Systems - methods ; Electronics, Medical - instrumentation ; Electronics, Medical - methods ; Electrophysiology ; Electrophysiology - instrumentation ; Electrophysiology - methods ; GABAA receptor ; Humans ; Inhibitory Postsynaptic Potentials - drug effects ; Inhibitory Postsynaptic Potentials - physiology ; Ion channel ; Kinetics ; Ligand-gated ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Neural Inhibition - drug effects ; Neural Inhibition - physiology ; Neurochemistry - instrumentation ; Neurochemistry - methods ; Neurotransmitter Agents - metabolism ; Neurotransmitter Agents - pharmacology ; Neurotransmitter Agents - secretion ; Patch clamp ; Patch-Clamp Techniques - instrumentation ; Patch-Clamp Techniques - methods ; Pharmacology ; Photolithography ; Presynaptic Terminals - drug effects ; Presynaptic Terminals - metabolism ; Presynaptic Terminals - secretion ; Receptors, GABA-A - drug effects ; Receptors, GABA-A - metabolism ; Recombinant Proteins - drug effects ; Recombinant Proteins - metabolism ; Solution exchange ; Solution switching ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology ; Time Factors</subject><ispartof>Journal of neuroscience methods, 2009-03, Vol.177 (2), p.294-302</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 Elsevier B.V. All rights reserved. 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-1dc75093e1cb2e30a396b95a3e6fac0b6659c542c780e9cde380e0e607b721d93</citedby><cites>FETCH-LOGICAL-c469t-1dc75093e1cb2e30a396b95a3e6fac0b6659c542c780e9cde380e0e607b721d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19013195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Botzolakis, E.J.</creatorcontrib><creatorcontrib>Maheshwari, A.</creatorcontrib><creatorcontrib>Feng, H.J.</creatorcontrib><creatorcontrib>Lagrange, A.H.</creatorcontrib><creatorcontrib>Shaver, J.H.</creatorcontrib><creatorcontrib>Kassebaum, N.J.</creatorcontrib><creatorcontrib>Venkataraman, R.</creatorcontrib><creatorcontrib>Baudenbacher, F.</creatorcontrib><creatorcontrib>Macdonald, R.L.</creatorcontrib><title>Achieving synaptically relevant pulses of neurotransmitter using PDMS microfluidics</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>Fast synaptic transmission is mediated by post-synaptic ligand-gated ion channels (LGICs) transiently activated by neurotransmitter released from pre-synaptic vesicles. Although disruption of synaptic transmission has been implicated in numerous neurological and psychiatric disorders, effective and practical methods for studying LGICs in vitro under synaptically relevant conditions are unavailable. Here, we describe a novel microfluidic approach to solution switching that allows for precise temporal control over the neurotransmitter transient while substantially increasing experimental throughput, flexibility, reproducibility, and cost-effectiveness. When this system was used to apply ultra-brief (∼400μs) GABA pulses to recombinant GABAA receptors, members of the cys-loop family of LGICs, the resulting currents resembled hippocampal inhibitory post-synaptic currents (IPSCs) and differed from currents evoked by longer, conventional pulses, illustrating the importance of evaluating LGICs on a synaptic timescale. This methodology should therefore allow the effects of disease-causing mutations and allosteric modulators to be evaluated in vitro under physiologically relevant conditions.</description><subject>Allosteric Regulation - drug effects</subject><subject>Allosteric Regulation - physiology</subject><subject>Cell Line</subject><subject>Cys-loop</subject><subject>Drug Delivery Systems - instrumentation</subject><subject>Drug Delivery Systems - methods</subject><subject>Electronics, Medical - instrumentation</subject><subject>Electronics, Medical - methods</subject><subject>Electrophysiology</subject><subject>Electrophysiology - instrumentation</subject><subject>Electrophysiology - methods</subject><subject>GABAA receptor</subject><subject>Humans</subject><subject>Inhibitory Postsynaptic Potentials - drug effects</subject><subject>Inhibitory Postsynaptic Potentials - physiology</subject><subject>Ion channel</subject><subject>Kinetics</subject><subject>Ligand-gated</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Neural Inhibition - drug effects</subject><subject>Neural Inhibition - physiology</subject><subject>Neurochemistry - instrumentation</subject><subject>Neurochemistry - methods</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Neurotransmitter Agents - pharmacology</subject><subject>Neurotransmitter Agents - secretion</subject><subject>Patch clamp</subject><subject>Patch-Clamp Techniques - instrumentation</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Pharmacology</subject><subject>Photolithography</subject><subject>Presynaptic Terminals - drug effects</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Presynaptic Terminals - secretion</subject><subject>Receptors, GABA-A - drug effects</subject><subject>Receptors, GABA-A - metabolism</subject><subject>Recombinant Proteins - drug effects</subject><subject>Recombinant Proteins - metabolism</subject><subject>Solution exchange</subject><subject>Solution switching</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><subject>Time Factors</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFUU1P4zAQtRAICuxfQDntLWUcN3Z8QYtgF5BAIMFKe7McZ0JdJU6xnUr99-uqXVhOnEaaeR8z8wg5ozClQPn5YrpwOPYY59MCoErNKdDZHpnQShQ5F9WffTJJwDKHQsAROQ5hAQAzCfyQHFEJlFFZTsjzpZlbXFn3moW108toje66deaxw5V2MVuOXcCQDW2W_PwQvXahtzGiz8awoT1dPzxnvTV-aLvRNtaEU3LQ6sT6tqsn5Pevny9Xt_n9483d1eV9bmZcxpw2RpQgGVJTF8hAM8lrWWqGvNUGas5LacpZYUQFKE2DLFVADqIWBW0kOyEXW93lWPfYGHRpu04tve21X6tBW_V54uxcvQ4rxUTFBVRJ4PtOwA9vI4aoehsMdp12OIxBcV4xUTKegHwLTFeG4LF9N6GgNnmohfqXh9rksemnPBLx7P8VP2i7ABLgxxaA6VEri14FY9EZbKxHE1Uz2K88_gIxwaMb</recordid><startdate>20090315</startdate><enddate>20090315</enddate><creator>Botzolakis, E.J.</creator><creator>Maheshwari, A.</creator><creator>Feng, H.J.</creator><creator>Lagrange, A.H.</creator><creator>Shaver, J.H.</creator><creator>Kassebaum, N.J.</creator><creator>Venkataraman, R.</creator><creator>Baudenbacher, F.</creator><creator>Macdonald, R.L.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090315</creationdate><title>Achieving synaptically relevant pulses of neurotransmitter using PDMS microfluidics</title><author>Botzolakis, E.J. ; Maheshwari, A. ; Feng, H.J. ; Lagrange, A.H. ; Shaver, J.H. ; Kassebaum, N.J. ; Venkataraman, R. ; Baudenbacher, F. ; Macdonald, R.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-1dc75093e1cb2e30a396b95a3e6fac0b6659c542c780e9cde380e0e607b721d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Allosteric Regulation - drug effects</topic><topic>Allosteric Regulation - physiology</topic><topic>Cell Line</topic><topic>Cys-loop</topic><topic>Drug Delivery Systems - instrumentation</topic><topic>Drug Delivery Systems - methods</topic><topic>Electronics, Medical - instrumentation</topic><topic>Electronics, Medical - methods</topic><topic>Electrophysiology</topic><topic>Electrophysiology - instrumentation</topic><topic>Electrophysiology - methods</topic><topic>GABAA receptor</topic><topic>Humans</topic><topic>Inhibitory Postsynaptic Potentials - drug effects</topic><topic>Inhibitory Postsynaptic Potentials - physiology</topic><topic>Ion channel</topic><topic>Kinetics</topic><topic>Ligand-gated</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Neural Inhibition - drug effects</topic><topic>Neural Inhibition - physiology</topic><topic>Neurochemistry - instrumentation</topic><topic>Neurochemistry - methods</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Neurotransmitter Agents - pharmacology</topic><topic>Neurotransmitter Agents - secretion</topic><topic>Patch clamp</topic><topic>Patch-Clamp Techniques - instrumentation</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Pharmacology</topic><topic>Photolithography</topic><topic>Presynaptic Terminals - drug effects</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Presynaptic Terminals - secretion</topic><topic>Receptors, GABA-A - drug effects</topic><topic>Receptors, GABA-A - metabolism</topic><topic>Recombinant Proteins - drug effects</topic><topic>Recombinant Proteins - metabolism</topic><topic>Solution exchange</topic><topic>Solution switching</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Botzolakis, E.J.</creatorcontrib><creatorcontrib>Maheshwari, A.</creatorcontrib><creatorcontrib>Feng, H.J.</creatorcontrib><creatorcontrib>Lagrange, A.H.</creatorcontrib><creatorcontrib>Shaver, J.H.</creatorcontrib><creatorcontrib>Kassebaum, N.J.</creatorcontrib><creatorcontrib>Venkataraman, R.</creatorcontrib><creatorcontrib>Baudenbacher, F.</creatorcontrib><creatorcontrib>Macdonald, R.L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Botzolakis, E.J.</au><au>Maheshwari, A.</au><au>Feng, H.J.</au><au>Lagrange, A.H.</au><au>Shaver, J.H.</au><au>Kassebaum, N.J.</au><au>Venkataraman, R.</au><au>Baudenbacher, F.</au><au>Macdonald, R.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving synaptically relevant pulses of neurotransmitter using PDMS microfluidics</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2009-03-15</date><risdate>2009</risdate><volume>177</volume><issue>2</issue><spage>294</spage><epage>302</epage><pages>294-302</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><abstract>Fast synaptic transmission is mediated by post-synaptic ligand-gated ion channels (LGICs) transiently activated by neurotransmitter released from pre-synaptic vesicles. Although disruption of synaptic transmission has been implicated in numerous neurological and psychiatric disorders, effective and practical methods for studying LGICs in vitro under synaptically relevant conditions are unavailable. Here, we describe a novel microfluidic approach to solution switching that allows for precise temporal control over the neurotransmitter transient while substantially increasing experimental throughput, flexibility, reproducibility, and cost-effectiveness. When this system was used to apply ultra-brief (∼400μs) GABA pulses to recombinant GABAA receptors, members of the cys-loop family of LGICs, the resulting currents resembled hippocampal inhibitory post-synaptic currents (IPSCs) and differed from currents evoked by longer, conventional pulses, illustrating the importance of evaluating LGICs on a synaptic timescale. This methodology should therefore allow the effects of disease-causing mutations and allosteric modulators to be evaluated in vitro under physiologically relevant conditions.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>19013195</pmid><doi>10.1016/j.jneumeth.2008.10.014</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-0270
ispartof Journal of neuroscience methods, 2009-03, Vol.177 (2), p.294-302
issn 0165-0270
1872-678X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3786708
source ScienceDirect Journals
subjects Allosteric Regulation - drug effects
Allosteric Regulation - physiology
Cell Line
Cys-loop
Drug Delivery Systems - instrumentation
Drug Delivery Systems - methods
Electronics, Medical - instrumentation
Electronics, Medical - methods
Electrophysiology
Electrophysiology - instrumentation
Electrophysiology - methods
GABAA receptor
Humans
Inhibitory Postsynaptic Potentials - drug effects
Inhibitory Postsynaptic Potentials - physiology
Ion channel
Kinetics
Ligand-gated
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Neural Inhibition - drug effects
Neural Inhibition - physiology
Neurochemistry - instrumentation
Neurochemistry - methods
Neurotransmitter Agents - metabolism
Neurotransmitter Agents - pharmacology
Neurotransmitter Agents - secretion
Patch clamp
Patch-Clamp Techniques - instrumentation
Patch-Clamp Techniques - methods
Pharmacology
Photolithography
Presynaptic Terminals - drug effects
Presynaptic Terminals - metabolism
Presynaptic Terminals - secretion
Receptors, GABA-A - drug effects
Receptors, GABA-A - metabolism
Recombinant Proteins - drug effects
Recombinant Proteins - metabolism
Solution exchange
Solution switching
Synaptic Transmission - drug effects
Synaptic Transmission - physiology
Time Factors
title Achieving synaptically relevant pulses of neurotransmitter using PDMS microfluidics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20synaptically%20relevant%20pulses%20of%20neurotransmitter%20using%20PDMS%20microfluidics&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Botzolakis,%20E.J.&rft.date=2009-03-15&rft.volume=177&rft.issue=2&rft.spage=294&rft.epage=302&rft.pages=294-302&rft.issn=0165-0270&rft.eissn=1872-678X&rft_id=info:doi/10.1016/j.jneumeth.2008.10.014&rft_dat=%3Cproquest_pubme%3E66837536%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-1dc75093e1cb2e30a396b95a3e6fac0b6659c542c780e9cde380e0e607b721d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=66837536&rft_id=info:pmid/19013195&rfr_iscdi=true