Loading…

A TRPC1 Protein-dependent Pathway Regulates Osteoclast Formation and Function

Ca2+ signaling is essential for bone homeostasis and skeletal development. Here, we show that the transient receptor potential canonical 1 (TRPC1) channel and the inhibitor of MyoD family, I-mfa, function antagonistically in the regulation of osteoclastogenesis. I-mfa null mice have an osteopenic ph...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2013-08, Vol.288 (31), p.22219-22232
Main Authors: Ong, E-Ching, Nesin, Vasyl, Long, Courtney L., Bai, Chang-Xi, Guz, Jan L., Ivanov, Ivaylo P., Abramowitz, Joel, Birnbaumer, Lutz, Humphrey, Mary Beth, Tsiokas, Leonidas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ca2+ signaling is essential for bone homeostasis and skeletal development. Here, we show that the transient receptor potential canonical 1 (TRPC1) channel and the inhibitor of MyoD family, I-mfa, function antagonistically in the regulation of osteoclastogenesis. I-mfa null mice have an osteopenic phenotype characterized by increased osteoclast numbers and surface, which are normalized in mice lacking both Trpc1 and I-mfa. In vitro differentiation of pre-osteoclasts derived from I-mfa-deficient mice leads to an increased number of mature osteoclasts and higher bone resorption per osteoclast. These parameters return to normal levels in osteoclasts derived from double mutant mice. Consistently, whole cell currents activated in response to the depletion of intracellular Ca2+ stores are larger in pre-osteoclasts derived from I-mfa knock-out mice compared with currents in wild type mice and normalized in cells derived from double mutant mice, suggesting a cell-autonomous effect of I-mfa on TRPC1 in these cells. A new splice variant of TRPC1 (TRPC1ϵ) was identified in early pre-osteoclasts. Heterologous expression of TRPC1ϵ in HEK293 cells revealed that it is unique among all known TRPC1 isoforms in its ability to amplify the activity of the Ca2+ release-activated Ca2+ (CRAC) channel, mediating store-operated currents. TRPC1ϵ physically interacts with Orai1, the pore-forming subunit of the CRAC channel, and I-mfa is recruited to the TRPC1ϵ-Orai1 complex through TRPC1ϵ suppressing CRAC channel activity. We propose that the positive and negative modulation of the CRAC channel by TRPC1ϵ and I-mfa, respectively, fine-tunes the dynamic range of the CRAC channel regulating osteoclastogenesis. Background: Ca2+ signaling is essential for osteoclastogenesis. Results: I-mfa negatively regulates TRPC1-mediated Ca2+ signaling and osteoclastogenesis. Conclusion: TRPC1 and I-mfa fine-tune the dynamic range of store-operated Ca2+ entry channels during osteoclastogenesis. Significance: The TRPC1/I-mfa interaction is biologically relevant in osteoclastogenesis.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M113.459826