Loading…

Cyclic AMP Receptor Protein Regulates cspD, a Bacterial Toxin Gene, in Escherichia coli

cspD, a member of cspA family of cold shock genes in Escherichia coli, is not induced during cold shock. Its expression is induced during stationary phase. CspD inhibits DNA replication, and a high level of the protein is toxic to cells. Recently, CspD was proposed to be associated with persister ce...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bacteriology 2014-04, Vol.196 (8), p.1569-1577
Main Authors: Uppal, Sheetal, Shetty, Deeksha M, Jawali, Narendra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:cspD, a member of cspA family of cold shock genes in Escherichia coli, is not induced during cold shock. Its expression is induced during stationary phase. CspD inhibits DNA replication, and a high level of the protein is toxic to cells. Recently, CspD was proposed to be associated with persister cell formation in E. coli. Here, we show that cyclic AMP receptor protein (CRP) upregulates cspD transcription. Sequence analysis of the cspD upstream region revealed two tandem CRP target sites, CRP site-I (the proximal site centered at −83.5 with respect to the transcription start) and CRP site-II (the distal site centered at −112.5). The results from electrophoretic mobility shift assays showed that CRP indeed binds to these two target sites in PcspD. The promoter-proximal CRP target site was found to play a major role in PcspD activation by CRP, as studied by transcriptional fusions carrying mutations in the target sites. The results from in vitro transcription assays demonstrated that CRP activates PcspD transcription in the absence of additional factors other than RNA polymerase. The requirement for activating region 1 of CRP in PcspD activation, along with the involvement of the 287, 265, and 261 determinants of the α-CTD, suggest that CRP activates by a class I-type mechanism. However, only moderate activation in vitro was observed compared to high activation in vivo, suggesting there might be additional activators of PcspD. Overall, our findings show that CRP, a global metabolic regulator in E. coli, activates a gene potentially related to persistence.
ISSN:0021-9193
1098-5530
DOI:10.1128/JB.01476-13