Loading…

The modulation of pancreatic lipase activity by alginates

•Certain alginates are effective inhibitors of pancreatic lipase.•The level of lipase inhibition by alginates is related to the structure of the polymer.•High guluronate alginates achieve greater lipase inhibition than high mannuronate.•Alginates have the potential to be a well-tolerated obesity tre...

Full description

Saved in:
Bibliographic Details
Published in:Food chemistry 2014-03, Vol.146 (100), p.479-484
Main Authors: Wilcox, Matthew D., Brownlee, Iain A., Richardson, J. Craig, Dettmar, Peter W., Pearson, Jeffrey P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:•Certain alginates are effective inhibitors of pancreatic lipase.•The level of lipase inhibition by alginates is related to the structure of the polymer.•High guluronate alginates achieve greater lipase inhibition than high mannuronate.•Alginates have the potential to be a well-tolerated obesity treatment. Alginates are comprised of mannuronic (M) and guluronic acid (G) and have been shown to inhibit enzyme activity. Pancreatic lipase is important in dietary triacylglycerol breakdown; reducing pancreatic lipase activity would reduce triacylglycerol breakdown resulting in lower amounts being absorbed by the body. Lipase activity in the presence of biopolymers was assessed by enzymatic assay using natural and synthetic substrates. Alginate inhibited pancreatic lipase by a maximum of 72.2% (±4.1) with synthetic substrate (DGGR) and 58.0% (±9.7) with natural substrate. High-G alginates from Laminaria hyperborea seaweed inhibited pancreatic lipase to a significantly higher degree than High-M alginates from Lessonia nigrescens, showing that inhibition was related to alginate structure. High-G alginates are effective inhibitors of pancreatic lipase and are used in the food industry at low levels. They could be included at higher levels in foods without altering organoleptic qualities, potentially reduce the uptake of dietary triacylglycerol aiding in weight management.
ISSN:0308-8146
1873-7072
DOI:10.1016/j.foodchem.2013.09.075