Loading…

Number of circulating pro-angiogenic cells, growth factor and anti-oxidative gene profiles might be altered in type 2 diabetes with and without diabetic foot syndrome

Aims/Introduction Type 2 diabetes is often complicated by diabetic foot syndrome (DFS). We analyzed the circulating stem cells, growth factor and anti‐oxidant gene expression profiles in type 2 diabetes patients without or with different forms of DFS. Materials and Methods Healthy volunteers (n = 13...

Full description

Saved in:
Bibliographic Details
Published in:Journal of diabetes investigation 2014-01, Vol.5 (1), p.99-107
Main Authors: Nowak, Witold N, Borys, Sebastian, Kusińska, Katarzyna, Bukowska-Strakova, Karolina, Witek, Przemysław, Koblik, Teresa, Józkowicz, Alicja, Małecki, Maciej Tadeusz, Dulak, Józef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aims/Introduction Type 2 diabetes is often complicated by diabetic foot syndrome (DFS). We analyzed the circulating stem cells, growth factor and anti‐oxidant gene expression profiles in type 2 diabetes patients without or with different forms of DFS. Materials and Methods Healthy volunteers (n = 13) and type 2 diabetes patients: (i) without DFS (n = 10); or with (ii) Charcot osteoneuropathy (n = 10); (iii) non‐infected (n = 17); (iv) infected (n = 11); and (v) healed ulceration were examined (n = 12). Peripheral blood endothelial progenitor cells (EPC), mesenchymal stem cells (MSC), hematopoietic stem cells (HSC) and very small embryonic‐like (VSEL) cells were phenotyped using flow cytometry. Plasma cytokine concentrations and gene expressions in blood cells were measured by Luminex and quantitative real‐time polymerase chain reaction assays, respectively. Results Patients with non‐complicated type 2 diabetes showed reduced HMOX1 expression, accompanied by HMOX2 upregulation, and had less circulating EPC, MSC or HSC than healthy subjects. In contrast, VSEL cells were elevated in the type 2 diabetes group. However, subjects with DFS, even with healed ulceration, had fewer VSEL cells, more CD45‐CD29+CD90+MSC, and upregulated HMOX1 when compared with the type 2 diabetes group. Patients with Charcot osteopathy had lowered plasma fibroblast growth factor‐2. Elevated plasma tumor necrosis factor‐α and decreased catalase expression was found in all diabetic patients. Conclusions Patients with type 2 diabetes and different forms of DFS have an altered number of circulating stem cells. Type 2 diabetes might also be associated with a changed plasma growth factor and anti‐oxidant gene expression profile. Altogether, these factors could contribute to the pathogenesis of different forms of DFS.
ISSN:2040-1116
2040-1124
DOI:10.1111/jdi.12131